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Magnetic molecular spectroscopic properties, like NMR J-coupling and magnetic
shielding �, have been studied by non-relativistic quantum methods since their
discovery. When they were found to depend strongly on relativistic effects
in molecules containing heavy atoms, this started a new area of intensive
research into the development of methods that include such effects. In most cases
non-relativistic concepts were extended to the new field though keeping the
previous non-relativistic point of view. Quantum mechanics can be formulated by
two different formal approaches. Molecular physics and quantum chemistry were
developed mostly within the Schrödinger or Heisenberg approaches. The path
integral formalism of Feynman is less well known. This may be the reason why
propagators are not broadly known in this field of research. Polarization
propagators were developed in the early 1970s. Since that time they have been
successfully applied to calculate NMR spectroscopic parameters. They are special
theoretical devices from which one can do a deep analysis of the electronic
mechanisms that underly any molecular response property from basic theoretical
elements, like molecular orbitals, electronic excitation energies, coupling path-
ways, entanglement, contributions within different levels of theory, etc. All this is
obtained in a natural way in both regimes: relativistic and non-relativistic. Its
relativistic generalization in the early 1990s and the finding of a quantum
electrodynamic (QED)-based theory for them, has given us the opportunity to
improve our understanding of the physics behind such parameters. In this paper
we give a presentation of polarization propagators that start in non-relativistic
quantum physics and end up with the introduction of QED effects. The same and
powerful basic quantum ideas are applied throughout this review, so that
coherence and beauty arise in a natural way. We will give a new understanding
that comes from the three levels of theory: non-relativistic, relativistic and QED.
We will be cautious to highlight what one can learn when working in any of these
regimes, being aware that the same concepts may have different meanings.
Starting with a general overview of polarization propagators we develop both the
theory and applications in each of the three levels mentioned above. We show
how some of the most subtle properties of the NMR spectroscopic parameters
can be explained in a simple and beautiful way: the sign of J, the Karplus rule,
cooperative effects, diamagnetic and paramagnetic contributions; we also show
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new rules that appear within the relativistic regime and the way previously valid
rules within the non-relativistic theory are broken. We highlight the fact that
within the relativistic theory of polarization propagators the whole set
of electronic mechanisms that appears within the NR regime and within its
quasi-relativistic extension is unified. Furthermore the usual notion of
diamagnetism and paramagnetism are now nonsense as such because they arise
only after as an approximation from expressions which include a unique type of
electronic (electron–positron) mechanism.

Keywords: polarization propagators; NMR spectroscopic parameters; electron
correlation; Karplus rule; relativistic effects; diamagnetism; QED effects; gauge
invariance
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1. Introduction

Propagators are mathematical tools introduced in physics in the early 1940s, mainly
by Richard Feynman [1], in order to develop a quantum theory equivalent to that of
Heisenberg and Schrödinger, although from a different perspective. The main driving
force was perhaps the explanation of quantum effects or quantum phenomena from
theoretical ideas that may have a similar flavour to those of classical physics or the physics
behind the least action principle. Within the path integral formalism infinitely many
pathways contribute with a definite probability amplitude to the final calculated results
which correspond to the measured property. That formalism can straightforwardly be
written in terms of the usual molecular orbital language of molecular physics and quantum
chemistry, so that the powerful physical and chemical ideas behind what was later called
propagators can be applied to phenomena that are studied within this field of science.
The Feynman propagator is a particular Green’s function properly defined within the
framework of quantum theory.

Propagators were introduced into molecular physics and quantum chemistry 30 years
after their discovery, i.e. in the early 1970s [2]. Oddershede and Jorgensen were the main
contributors to the development of polarization propagators from the beginning [3–5].
The application of such propagators to ab initio calculation of NMR spectroscopic
parameters [6,7] was at that time exclusively based on the non-relativistic (NR) theory
of Ramsey [8–12]. A semi-empirical scheme for calculating NMR J-couplings was
developed by Contreras and coauthors in the 1980s [13–15].

In the early 1990s a generalization of such polarization propagators for including
relativistic effects was presented [16]. It resorts to the same formal definition but its
application within the Dirac formalism led to a new and interesting interpretation (or its
complete modification) of previous well-established NR physical concepts, like the
diamagnetic contribution to magnetic properties. It was quite remarkable that NR limits
were obtained from the relativistic expressions, making c go to infinity. This is in line with
the relationship between relativistic and non-relativistic classical expressions. They can be
obtained taking the limit c!1, though within the relativistic regime completely new
concepts appear that modify our perspective of the world around us. Another fundamental
aspect discovered when working within the relativistic regime is the fact that a single
electronic mechanism arise as the source for each of both NMR spectroscopic parameters.
The unification of the four NR traditional mechanisms – Fermi-contact (FC), spin-dipole
(SD), paramagnetic spin-orbital (PSO), and diamagnetic spin-orbital (DSO) – for
J-couplings, in a single mechanism can be considered an important step forward.
Indeed, the inclusion of the leading relativistic corrections to these NR terms gives rise to
some further terms which are related to different kinds of interplay between
spin-independent and spin-dependent perturbed operators. This unification is of great
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help and shows that one can expect some more news on the physics described with such

relativistic polarization propagators.
During the last few years, a quantum electrodynamic (QED)-based version of

polarization propagators was developed [17,18]. This is another step upward in the theory
from their relativistic formulation. It makes it possible to analyse the physics including

radiative phenomena and also provides a deeper understanding of the electronic and

nuclear origin of NMR spectroscopic parameters. Application of such a formalism

allows us to explain what seems to happen within the region close to the magnetic nucleus,

when they interact with the electron’s charge, its spin and external magnetic fields.

From a covariant approach of the formalism it is meaningless to talk about diamagnetic
and paramagnetic contributions. They appear as NR artefacts, though such a splitting

can be obtained when the polarization propagators are expressed in a non-covariant

formulation. This is a nice finding: diamagnetic and paramagnetic terms of both NMR

spectroscopic parameters, i.e. the nuclear magnetic shielding tensor, �, and the indirect

nuclear spin coupling tensor, J, can be understood as related to the two non-covariant
types of Feynman diagram corresponding to an electronic system interacting with two

external magnetic fields. This explains, on different theoretical grounds, why they are not

gauge-invariant when treated separately or, in other words, why the gauge-invariance is

only fulfilled for calculations involving both terms.
The beauty and predictive power of propagators is not exclusive to the relativistic regime

and QED theory. It was already appreciated within the NR regime where the subtle
quantum behaviour of � and Jwas easily explained, such as the origin of the sign of Jwhich

can be related to the relative phases between occupied and virtual molecular orbitals (MOs),

as well as the origin of the Karplus rule. Aside from such physical insight calculation of

molecular properties with polarization propagators, are between the most reliable ones.
The main purpose of this review article is to give a brief (though as complete as

possible) introduction to polarization propagators independently of the regime where they
are applied, whether non-relativistic or relativistic. We will give some fundamentals of the

general theory and models that were developed within the last 20 years to calculate and

analyse some of the most important electronic effects on NMR � and J. We will emphasize

the ideas behind propagators and try to exploit them to get a global understanding on

what one can grasp from the application of this theoretical tool.
We start with the basic definition of polarization propagators and their formal

development to calculate and analyse molecular response properties. Non-relativistic

theory and models are then revisited. We show several specific applications with ab initio

and semi-empirical models. The next step is to introduce the relativistic theory and finally

the QED-based theory. We describe the relatively new field of relativistic quantum

chemistry (applied to molecular magnetic properties) in a manner that should be accessible
to non-experts in this field. We introduce some new concepts that are needed to follow the

formal development, and give more details in what we believe are new understandings

arising from our formulation. As an example, we shall give some new insights into what

are the negative-energy states that appear when solving the Dirac or fully-relativistic

equations. The appearance of virtual negative-energy states or equivalently virtual

electron–positron pair creation and annihilation is a new concept that goes further than
the previous virtual orbitals, but is needed to describe magnetic molecular properties in a

complete way.

4 G. A. Aucar et al.
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2. Propagators: what are they and how do we apply them in theoretical molecular physics?

Quantum mechanics can be formulated in two different ways. In the usual approach the

quantities r and p or the magnitudes of position and linear momentum are replaced by

operators which obey Heisenberg commutation relations. Such operators act on functions

which belong to a given Hilbert space. On the other hand, the path integral formulation

of QM is less well known though it is completely equivalent to the previously mentioned

approach. In this second form one needs to define a quantity, the propagator K(tf, rf; ti, ri),

which relates the wavefunction values at two different times and positions, (ti, ri) and

(tf, rf), through the equation

 ðtf, rf Þ ¼

Z
Kðtf, rf; ti, riÞ ðti, riÞdri: ð1Þ

The propagator is related to the probability amplitude that a particle described by a

wavefunction  at position ri at time ti is described by another wavefunction  at position

rf at time tf. The main point to stress here is that such a probability involves the whole set

of intermediate positions through which the particle may reach the point (tf, rf) having

started at (ti, ri). One may say that the particle, in the path integral formulation, follows

all possible paths connecting the initial and final points.
The propagator can be strictly defined in the non-relativistic domain for systems whose

Hamiltonian is [19]

H ¼ Tþ V ¼
p2

2m
þ V ð2Þ

through

Kðtf, rf; ti, riÞ ¼ �

Z
Dr exp �

i

�h

Z tf

ti

Lðr, _rÞdt

� �
ð3Þ

were � is a constant and L¼T�V is the Lagrangian of the system from which all

equations of motion can be derived. Feynman started from this identity and then derived

from it the corresponding Schrödinger equation.
The path integral formulation stresses a completely different perspective on the

fundamental principle of linear superposition of quantum mechanics. This principle asserts

that given n different wavefunctions that fulfil the Schrödinger equation corresponding

to a given Hamiltonian of a system, their linear combination will give the general solution

of that Schrödinger equation, the complex coefficients being the corresponding probability

amplitudes. In the Feynman formulation such a linear combination is replaced by a

superposition of all alternative pathways that are represented by all possible pathways that

the system can follow from a given initial space-time point to the final space-time point.

This is one of the main concepts from which one can grasp the interpretation that follows

from a special type of propagator, the polarization propagator. When they are expressed

in a MO basis they will be constructed as a summation over all possible electronic

pathways that a perturbed density will follow from one point to another of the molecule.

In a more general perspective, for quantum chemistry methods applied to calculate

molecular properties, this will mean that the system will follow all possible excitations

that contribute to the studied property.

International Reviews in Physical Chemistry 5
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The formal definition of propagators is the same whatever be the regime on which it is
applied; they strive only on fundamental rules of quantum mechanics. Hence it is
reasonable to expect them to be valid both in the relativistic and non-relativistic realms.
In line with this, also the interpretation of propagators should have an equivalent flavour
for every physical property to which it can be applied.

In linear response theory one describe how the average value of an arbitrary operator P
develops when the external perturbation described by the operator Q is switched on.
In the very special case of an electron propagator and within the NR regime, the
corresponding Green’s function may be considered to describe three successive steps:
(i) the appearance of an electron at (ti, ri), (ii) the propagation of the electron from (ti, ri)
to (tf, rf), and (iii) the disappearance of the electron at (tf, rf). Within this regime, the
electron has only positive energies, so this process is physically acceptable for tf4 ti.
This will be modified when working within the relativistic regime.

Propagators are the Green’s functions of the Schrödinger (Dirac) equation in the NR
(R) regime. To describe processes that generate linear response properties of the electronic
system, two-particle propagators are needed. Polarization propagators lend themselves
to this because they are equivalent to two-particle double-time Green’s functions.

2.1. Response properties and polarization propagators

The polarization propagator is defined as

ihhP xð Þ;Q yð Þii ¼ �h� tx � ty
� �

h0jPðrxÞQðryÞj0i þ �h� ty � tx
� �

h0jQðryÞPðrxÞj0i, ð4Þ

where x and y stand for the space-time points x¼ (tx, rx) and y¼ (ty, ry), respectively.
This definition is independent of whether the underlying theoretical framework is
relativistic or non-relativistic [16], even though its first formulation was given within
a non-relativistic regime [5]. This fact will be exploited widely in this article. The reference
state j0i will be properly chosen according to the regime considered.

Since the polarization propagator has the same basic quantum nature as a
wavefunction  one may ask for its equation of motion, i.e. how the polarization evolves
with time. One can write explicit expressions for that equation of motion which can be
solved by formal procedures [5,20]. Furthermore one can transform time-dependent
expressions to their corresponding energy-dependent framework in order to make use
of this tool in spectroscopic problems.

The equation of motion for propagators can be obtained by first applying the
Heisenberg equation of motion for the time-dependent operators, P(t) and Q(t0), and then
Fourier transforming the final expressions [20]:

EhhP;QiiE ¼ h0j P,Q½ �j0i þ hh P,H0½ �;QiiE: ð5Þ

Solving Equation (5) iteratively one gets the moment expansion of the polarization
propagators. Solutions of this equation can be obtained by applying a well-defined
technique first derived by Goscinski and Lukman [21]: the superoperator technique.
In Equation (5) H0 is the unperturbed Hamiltonian describing the electronic system,
and j0i represents the reference state that in our case will be a single-determinant state
composed of one-electron wavefunctions which are solutions of the Hartree–Fock
(HF; NR) or Dirac–Hartree–Fock equations (DHF; R), respectively.

6 G. A. Aucar et al.
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The final form of the equation of motion obtained with superoperator algebra and the

inner projection technique is [22]

hhP;QiiE ¼ Pyjh
� �

~hjEÎ� Ĥ0jh
� ��1

~hjQ
� �

, ð6Þ

h being a complete operator manifold of basic excitation operators from which it is

possible to describe the whole branch of excited states arising from a given reference

state j0i. The operators P and Q should also be described in terms of basic excitation

operators belonging to h. Furthermore, the basic excitation operators can be written with

their explicit spin-dependence within the non-relativistic regime. In the case of the

relativistic regime where the spin is no longer a good quantum number, the spin symmetry

can be replaced by the more general time reversal symmetry [23]. This is a powerful way

of obtaining excited states from the reference state and to solve the algebraic operations

that are included in Equation (6). In this last equation there are two different type of

factors: perturbators and principal propagators. We want to give their explicit form and

meaning as a background of what follows.
The binary product (PjQ) is defined as:

PjQð Þ ¼ h0j½Py,Q�j0i, ð7Þ

while the effect of the superoperator Ĥ acting on the operator P is

ĤP ¼ H,P½ �: ð8Þ

The operators P, Q, etc. that represent physical magnitudes or the Hamiltonian of the

system can be expressed in terms of basic operators that are defined in an actual basis.

This way of writing the equations is oriented to obtaining explicit formulas to be

implemented in computational codes.
Any operator P can be written as

P ¼
X
p,q

Ppqa
y
paq, ð9Þ

ayp and aq being creation and annihilation operators, respectively. Another way to get the

same expansion is by using spin-adapted excitation operators [24], that is,

P ¼
X
p,q

PpqEpq: ð10Þ

The complete excitation operator manifold, i.e. h, may also be expanded in terms of the

operators E. For polarization propagators, the operator manifold is chosen as

h ¼ h2, h4, . . . ,f g, ð11Þ

where

h2 ¼ ayaai, a
y

i aa

n o
;

h4 ¼ ayaa
y

baiaj, a
y

j a
y

i abaa

n o
; etc:

ð12Þ

International Reviews in Physical Chemistry 7
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and where a, b, . . . , refer to unoccupied HF or DHF orbitals, and i, j, . . . stand for

occupied HF or DHF orbitals. Then, using this manifold decomposition, Equation (6)

can be written in matrix form as

hhP;QiiE ¼ Pya,P
y

b, . . . ,
� � Maa Mab . . . ,

Mba Mbb . . . ,

. . . , . . . , . . . ,

0
B@

1
CA
�1

Qa

Qb

. . . ,

0
B@

1
CA, ð13Þ

where

Pa ¼ Pjhað Þ, ð14Þ

and

Mab ¼ hajEÎ� Ĥ0j~hb

� �
: ð15Þ

We can write Equation (13) in the more compact way

hhP;QiiE ¼ bPM�1bQ: ð16Þ

The factor M�1 on the right-hand side of Equation (13) is known as the principal

propagator, while bP and bQ are the property matrix elements or, as they were called

within semi-empirical models, the perturbators. The principal propagator depends only on

both the electronic molecular system as a whole and the spin (time-reversal) dependence

of the perturbators, but it is independent of the particular molecular property. It gives the

main streamlines of transmission of the interaction between the external perturbations

related to the property matrix elements, through the unperturbed electronic system.

This means that perturbations intervene explicitly only on the perturbators though

indirectly on the principal propagator through its spin-dependence.
Every static second-order molecular property, i.e., those arising from a second-order

correction to the energy and depending on two external static fields, can be calculated

by using polarization propagators. This is apparent from the following equation

E 2
PQ ¼

1

2
RehhHP;HQiiE¼0 ð17Þ

where HP and HQ are the interaction Hamiltonians related to the external perturbations

whose molecular response properties are of interest.
In the case of NMR spectroscopic parameters the starting point is a phenomenological

perturbing Hamiltonian that describe accurately the experimental NMR spectra [25].

The complete Hamiltonian is then

H ¼ H0 þH1,NMR ð18Þ

where

H1,NMR ¼
X
MN

lM � ðDMN þ JMNÞ � lN

� 	
þ
X
M

lM � 1� rMð Þ � B
� 	

ð19Þ

and where lM is the nuclear dipole moment of nucleusM, DMN and JMN are the direct and

indirect nuclear spin coupling tensors, rM the nuclear magnetic shielding of nucleus M,

8 G. A. Aucar et al.
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and B is the static external magnetic field. From these last equations it is clear that to

derive theoretical expressions for NMR spectroscopic parameters one should propose

bilinear perturbative Hamiltonians depending on two different nuclear dipole moments

(for J), and on a nuclear dipole moment and the external magnetic field (for r). Since

the nuclear magnetic moments kN are proportional to the nuclear spins IN, the magnetic

interaction energy between the coupled nuclei depend on IM and IN, and are expressed as

E
ð2Þ
MN ¼ hIM � JMN � IN ð20Þ

and the interaction energy between the nuclear spin IM and the external static magnetic

field B is

E
ð2Þ
M ¼ �hIM � �M � B: ð21Þ

Using perturbation theory, the non-relativistic paramagnetic-like terms of J and r arise

from second-order corrections to the electronic energy.

E
ð2Þ
PQ ¼

X
n 6¼0

0jHPjn

 �

njHQj0

 �

E0 � En

� 
: ð22Þ

The perturbation Hamiltonians HP and HQ can be any of the Hamiltonians proportional

to the nuclear spin IM or the external static magnetic field B; their explicit forms will be

given in the next section (see Equations 40, 42 and 44) for J-couplings and Equations (44)

and (46) for p). It is worth to mentioning that in order to have a non-vanishing result, both

Hamiltonians must have the same time-reversal symmetry [26].
On the other hand, the NR diamagnetic-like expressions are obtained as a first-order

correction to the electronic energy

Eð1Þ ¼ hHSi, ð23Þ

where HS has a bilinear dependence with the external perturbation parameters and is also

given in the next section (see Equations 45 and 47).
Formally, Equations (17) and (22) are equivalent for calculating second-order

corrections to the energy. Nevertheless, in practical computations different strategies

are followed for evaluating them through approximate methods. In any case, we shall

emphasize here that propagators offer a powerful tool for the understanding of the

electronic mechanisms involved in the phenomena studied, rather than the numerical

identity of Equations (17) and (22) in approximate calculations. There is a connection

between polarization propagators and the widely used response theory formalism; the

interested reader can find it in [24,27–29].

2.2. Including electron correlation: first three levels or PZOA, RPA and SOPPA

So far the expressions for the polarization propagators are exact since we considered the

exact reference state j0i and a complete manifold of excitation operators, h. In practice this

is not the case because one does not know the exact reference state and cannot work with

a complete h. Therefore, some approximations have to be applied. One clever way to

International Reviews in Physical Chemistry 9
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do this is by expanding Equation (13) in terms of the fluctuation potential, which is

defined by

V ¼ H0 � F, ð24Þ

where H0 is the unperturbed Hamiltonian and F is the Fock operator written, in second

quantization, as

F ¼
X
p

"pa
y
pap: ð25Þ

The potential V represents the difference between the Coulomb and the self-consistent field

(SCF) potential; its second-quantized form is

V ¼
1

2

X
h pqjrsiaypa

y
qasar �

X
�pr

upra
y
par: ð26Þ

The matrix elements of the SCF potential are given by

upr ¼
Xocc
i

h pijjiri, ð27Þ

while the conventional notation for two-electron integrals has been used:

h pqjjrsi ¼ h pqjrsi � h pqjsri ð28Þ

and

pqjrs

 �

¼

Z
��pðr1Þ�

�
qðr2Þr

�1
12 �rðr1Þ�sðr2Þdr1dr2: ð29Þ

The random phase approximation (RPA) level of approach, which is first-order in the

fluctuation potential, is obtained when the reference state is obtained from a self-consistent

field calculation, namely,

j0i ¼ jSCFi, ð30Þ

jSCFi being the HF or DHF ground state for the non-relativistic and relativistic

RPA, respectively, and the operator manifold is truncated up to single-excitation

operators, i.e.

hf g ¼ h2f g: ð31Þ

All one-electron operators can be expanded in normal ordered second-quantized form

(see Equation 9) in terms of the manifold {h2} as

P ¼
X
ia

Paia
y
aai þ P�aia

y

i aa

h i
ð32Þ

where

Pai ¼ hajPji i: ð33Þ

10 G. A. Aucar et al.
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Then applying Equations (13)–(15) and Equations (24) and (31) one obtains

P;Q

 �
 �

E
¼ ~P, ~P�
� � A B�

B A�

� ��1
Q

Q�

� �
ð34Þ

where

Aia,jb ¼ �h0j
�
ayi aa,

�
aybaj,H0

��
j0i ¼ �ab�ij "a � "ið Þ þ haj jjibi ð35Þ

and

Bia,jb ¼ �h0j
�
ayi aa,

�
ayj ab,H0

��
j0i ¼ h jijjabi: ð36Þ

Matrix A contains the average value of the unperturbed Hamiltonian H0 between

two singly excited states with respect to the reference state, and the matrix elements of B

are the matrix elements of H0 between the reference state and the doubly excited states.

So matrix A has terms of O(V0) and O(V1), while matrix B has a term of order O(V1).
Following the same line of reasoning one could go one step up or down in the order

of the fluctuation potential considered for calculations. The pure-zeroth-order approach

(PZOA) is obtained when matrix B and all two-electron matrix elements of A are

neglected. Then the principal propagator becomes the inverse of the first term in the last

right-hand side of Equation (35).
From the RPA the next step upward in the inclusion of dynamic electronic correlation

is the second-order polarization propagator approach (SOPPA) [5,28]. At this level one

should consider

j0i ¼ jSCFi þ j0ð1Þi, ð37Þ

where j0(1)i are doubly excited states from a Rayleigh–Schrödinger expansion of the

reference state. For this second-order propagator the excitation manifold of operators

should also be expanded to include h4, i.e.

hf g ¼ h2, h4f g: ð38Þ

Then the transition matrix elements and the principal propagator are modified in such

a way that there appear new well-defined matrix elements which arise from two-particle–

two-hole excitations, h4. Another improvement is found when Moller–Plesset correlation

coefficients are replaced by coupled cluster single and double amplitudes in all matrix

elements belonging to SOPPA matrices [30]. A previous partial implementation of this last

modification was published by Oddershede and coworkers [31].
So far, SOPPA has only been derived for linear response functions and has therefore

only been used to calculate second-order molecular properties.The SOPPA linear response

function has been obtained by expressing the response function of the exact state within

the superoperator inner-projection formalism [21,22], truncating the response function such

that the response function and the poles are both correct to second order in perturbation

theory. Recently the SOPPA approach was derived from time-dependent perturbation

theory by parametrizing the time evolution of the exact state in terms of exponential

operators for orbital rotations and for higher-order excitations [32]. This approach may

straightforwardly be extended to quadratic and higher-order response functions.
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As we shall show in the next section any given linear response property can be
expressed as a product of two types of factors: the property matrix or perturbators b

and the principal propagators M�1¼P:

R ¼ bPM�1bQ: ð39Þ

At any level of approach, perturbators are mainly concerned with the outcome of the local
interaction through a given external perturbation between one occupied and one virtual
MO. The principal propagator describes how the interaction that occurs in one part of the
molecule is transmitted to any other part of the molecule. This description has similar
mathematical expressions to that of perturbation theory at an equivalent level of
approach.

3. NR theory and models

Historically, the theoretical explanation of NMR spectroscopic parameters relied on
non-relativistic expressions and concepts. The five famous papers by Ramsey [8–12]
gave the first expressions and were based completely on non-relativistic assumptions.
The non-relativistic external interaction Hamiltonians providing theoretical expressions
for the NMR spectroscopic tensor parameters, JMN and pM, are given below. We will give
first that for NMR-J couplings:

HFC ¼
8

3
��B�hge

X
N

�N
X
i

�ðriNÞsi � IN ¼
X
N

�NIN � V
FC
N ð40Þ

where �B is the nuclear magneton, �N is the magnetogyric ratio of nucleus N, ge is the
electronic g-factor, and

VFC
N ¼

8

3
��B�hge

X
i

�ðriNÞsi ð41Þ

is the corresponding Fermi contact perturbator. The Fermi contact perturbation
Hamiltonian of Equation (40) depends on the electronic density at the site of the nuclei.
One should include two of these Hamiltonians for calculating the NMR-J coupling.
So this spectroscopic parameter is directly related to the electronic densities on the sites
of the coupled nuclei, say M and N. The Fermi contact interaction is usually the most
important, though there are several molecular systems where this is not a valid assumption
and the other two ‘paramagnetic-like’ perturbative Hamiltonians are more important than
the FC one. They are the so-called spin-dipole (SD) and paramagnetic spin-orbital (PSO):

HSD ¼ 2�B�h
X
N

�N
X
i

3 si � riNð Þ IN � riNð Þ

r5iN
�
si � IN

r3iN

� �
, ð42Þ

or

HSD ¼
X
N

�NIN � V
SD
N , ð43Þ

and

HPSO ¼ �2i�B�h
X
N

�NIN �
X
i

riN � ri

r3iN
¼
X
N

�NIN � V
PSO
N : ð44Þ
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As observed in Equations (40), (42) and (44) the first two depend on the electron spin, and

the last one is electron-spin-independent.
Finally, the perturbative ‘diamagnetic-like’ Hamiltonian does not depend explicitly

on the electronic spin:

HDSO ¼
e�h�B

c

X
MN

�M�N
X
i

IM � INð Þ riM � riNð Þ � IM � riNð Þ IN � riMð Þ

r3iMr3iN
: ð45Þ

Theoretical expressions for nuclear magnetic shielding, �, depend on two quite different

kinds of perturbative Hamiltonians: (i) There are two paramagnetic Hamiltonians, which

means that their effects are such that they ‘shield’ the nucleus; that of Equation (44) and

another that arises from the external static magnetic field B:

HB ¼
�B

2
rG � pð Þ � B ¼

�B

2
lG � B ð46Þ

where rG refers to the electron position with respect to the gauge origin. (ii) The other

perturbative Hamiltonian has a diamagnetic effect, i.e. it reduces the magnetic field that

effectively appears in the nucleus of interest:

Hd ¼
e2

2m

X
N

�N
X
i

B � INð Þ r � riNð Þ � B � riNð Þ IN � rð Þ

r3r3iN
: ð47Þ

As shown in Equations (17) and (22) paramagnetic contributions to both NMR spectro-

scopic parameters can be obtained within non-relativistic polarization propagator theory.

Its diamagnetic contribution, however, is obtained as a ground-state expectation value.

Still Sauer has shown, through a transformation, that the diamagnetic contributions

can also be calculated with polarization propagators [30]. It should be noted that mixing

perturbations with different electron spin dependence gives vanishing results [26]. When

considering electron-spin-dependent Hamiltonians, the excitation energies of Equation

(22) should be restricted to that of singlet or triplet type. In the same manner, the principal

propagator of Equation (15) will be restricted [23,26]. Then, in the case of J-couplings

there will be two kinds of terms: (i) electron-spin-dependent terms which are related to the

triplet principal propagators: 3M�1; and (ii) electron-spin-independent terms which must

be calculated with singlet principal propagators: 1M�1.
Then, there are five contributions to the indirect nuclear spin coupling tensor,

J ¼ JFC þ JSD þ JPSO þ JFC=SD þ JDSO: ð48Þ

When calculated by the non-relativistic polarization propagator theory each one of the

first three terms is written as

JXMN ¼ �M�NhhV
X
M;VX

NiiE¼0 ð49Þ

where X¼FC, SD or PSO. In Equation (48) JFC/SD only contributes for systems in the

solid state phase, so it will not be considered here, while JDSO is isotropic. All terms

of Equation (49) can be calculated at different levels of approach depending on the

fluctuation potential, i.e. pure zeroth-order (PZOA), consistent first-order or random-

phase approximation (RPA), second-order level of approach (SOPPA), third-order level

of approach (TOPPA), etc. [28]. We will mainly be concerned with applications of
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propagators at the RPA level of approach due to the fact that it is much easier to get

physical insights that underly some important characteristic of NMR spectroscopic

parameters at this level. Results from PZOA and SOPPA calculations will also be given.
Even though PZOA and RPA are equivalent to uncoupled and coupled Hartree–Fock

respectively, we use this nomenclature in order to make explicit the different order in both

expressions and the fact that they arise from polarization propagators. This becomes

clearer when the SOPPA approximation is considered because in this case there is no other

approach which gives the same expressions.
Within the RPA level of approach, explicit expressions for the indirect NMR coupling

constant between nuclei M and N are

JXMN ¼ �M�NhhV
X
M;VX

NiiE¼0 ¼
X
ia,jb

bXM,iaPia,jbb
X
N,jb ð50Þ

with X¼FC, PSO or SD.
The principal propagator can be factored out to make explicit its electron spin

dependence. Then, matrices A and B of Equations (35) and (36) can be rewritten in such

a way that

mPia,jb ¼
mM�1ia,jb ¼

mA� mBð Þ
�1
ia,jb ð51Þ

where the superscripts m¼ 1 and m¼ 3 refers to singlet- and triplet-type properties and
mM is the sum or the difference of mA and mB, respectively. The matrix elements for these

spin-dependent matrices are given elsewhere [28].
In a completely similar manner one can work out the paramagnetic non-relativistic

nuclear magnetic shielding expressions

�pM ¼ �MhhV
PSO
M ; lGiiE¼0: ð52Þ

Both perturbations here are electron-spin independent. So the principal propagator is of

singlet-type.
In the next two subsections we give some comments and details about how each term

of the response expressions, Equations (49) and (52), have been calculated. In the

so-called ab initio schemes, every magnitude is calculated from the first principles of the

theory, within a given approximation, in contrast to semi-empirical methods where some

magnitudes are introduced as empirical parameters.
In what follows we will be concerned only with the 1/3 of the trace of both tensors

J and p, the magnitudes that are measured by experiments. We will not analyse the

anisotropy of such spectroscopic parameters.

3.1. Ab initio schemes and a few recent results at the SOPPA level of approach

There is a large number of studies on NMR spectroscopic parameters applying ab initio

SOPPA schemes [33]. During the last few years some new phenomena were also tackled

with propagators at the SOPPA level: isotope effects [34,35], the intramolecular proton

transfer mechanism in Schiff bases [36] and comparative results with state-of-the-art

methods were reviewed [37].
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Ab initio schemes were the first to be implemented and applied to calculate NMR

spectroscopic parameters [3–5]. We want to stress here the fact that calculations at the

SOPPA or SOPPA(CCSD) level of approach are among the most reliable ones [37,38].

Another important point is that, in actual calculations at the SOPPA or SOPPA(CCSD)
level with very large basis sets of size N, one cannot calculate each term of Equation (39)

separately. The CCSD amplitude calculation needed at SOPPA(CCSD) scales as N6,

while property calculations scale as N5. This implies that the principal propagator

matrix cannot be stored due to its size and one must calculate the product between the

principal propagator matrix with one of the two perturbators (or property matrices).
Hence, some important information contained within that matrix is lost.

Given that the computational cost of calculations at the SOPPA level is strongly

dependent on the number of Gaussian functions used as basis set, a scheme for including an

optimized number of functions within the basis set was developed and dubbed a local-dense

basis set (LDBS) [39–43]. It depends on the studied property and also on the main pathways

which describe the interaction and the local influence of different portions of the molecule.
The development of LDBS applied to molecules with more than two non-hydrogen atoms

was based on propagators. The larger the relative weight of the contributions of a given

atom or molecular fragment to J or r, the more accurately it can be described.
The experimental discovery of J-couplings transmitted through H-bonding stimulated

the study of such bonds by NMR spectroscopy [44–47]. New insights into the electronic

mechanisms involved and the chemical nature of H-bonds can be obtained by applying
theoretical models. The transmission of large enough J-couplings through n-monomers

bonded by H-bonds can be regarded as a cooperative effect. This is a ‘global’ electronic

effect though J-couplings are mainly built from local interactions. In a recent article [48]

we analysed the influence of cooperative effects on J-couplings for the linear chains

(HCN)n and (HNC)n (n¼ 1, . . . , 6). The FC is the most important intramolecular

mechanism for 1J(CN) though the PSO is as important as the FC for 2J(NH). Looking
for the origin of cooperative effects on such magnetic properties, we were able to show

that they are purely electronic. They do not depend on the geometry of each monomer

and there is a relationship between the number of monomers involved and the values

of intra- and intermolecular J-couplings.
Given that a �-electronic framework is involved SOPPA calculations are essential

to obtain reliable results due to instability problems. The RPA approximation of the
principal propagator P is closely related to the stability condition of the restricted Hartree–

Fock (RHF) ground state of the molecular system studied [28]. The RHF is not the most

general independent particle state. In order to guarantee that the energy remains at a

minimum, even when the imposed closed-shell restrictions were relaxed, the (nA� nB)

matrices must be positive definite. When a non-singlet (or triplet) instability situation
arises [49,50], at least one eigenvalue of the triplet (3A–3B) matrix is negative [51,52] or very

close to zero (a non-singlet HF quasi-instability – QI) [53]. This is one of the most frequent

problems encountered in calculations of some molecular properties like the NMR-J

couplings. It usually originates in the �-electronic framework [40,54,55]. In such cases,

both the FC and SD components of J could be exaggerated. A useful alternative solution

to overcome this non-singlet QI problems was given in [52].
Large long-range through-bond J-couplings were postulated and measured for H–H

couplings of unsaturated compounds [25]. What is the magnitude and the distance between
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the coupled nuclei that one could expect for such couplings? Only a few Hz and also a few
bonds away. If the FC mechanism is the main one, as happens for H–H couplings, its

J-value would fall to zero quite rapidly as more bonds separate both coupled nuclei. Studies

of J(F–F) on �-conjugated systems have shown that the PSO and SD mechanism becomes

as important as FC [56–59]. All these studies considered short-range couplings. The

behaviour of J(F–F) for several saturated and unsaturated compounds
(1,n-difluoro-alkanes, polyenes, cumulenes and polyynes) was studied with the SOPPA

and LDBS schemes [60]. In Figure 1 we show the behaviour of all four Ramsey mechanisms

contributing to J(F–F) with the F–F bond distance in Di-F polyenes. The main conclusions

of such studies were: (i) The couplings decays very quickly with the number of bonds in the
saturated 1,n-difluoroalkanes. In the conjugated polyenes and polyynes, the F–F couplings

can be transmitted over much longer distances. For difluorodecapentayne an F–F coupling

of �7Hz over a distance of 1.4 nm or 11 bonds was predicted. (ii) The F–F couplings in

molecules with conjugated �-systems are dominated by the non-contact PSO and SD
contributions. In both cases, the overall behaviour of the PSO and SD contributions is

similar, though they have different relative values. In the polyynes, the PSO term is always

larger but also decreases faster than the SD term. In the conjugated polyenes, on the other

hand, the spin-dipole term is the dominating contribution. This feature is completely

unusual for other types of couplings. In 1,4-difluorobuta-1,3-diene the PSO term is still
larger than the FC term, whereas in the longer molecules of this series the FC term is more

important than the PSO term. In general, also the Fermi-contact term is still important for

couplings over a nanometre or 11 bonds. The most important conclusion was that there

should be measurable couplings between fluorine nuclear spins separated by distances of a
few nanometres. These results suggest that one could find F–F coupling constants of a few

hertz in 1,n-difluoropolyens or 1,n-difluoropolyynes over even longer distances. From the

asymptotic behaviour of the calculated couplings in the 1,n-difluoropolyynes, they

estimated couplings of J(F–F)	 3.6Hz over 13 bonds or a distance of �1.6 nm and of
J(F–F)	 1.8Hz over 15 bonds or a distance of �2 nm. New studies have confirmed these

findings [61].
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Figure 1. [Colour online] Contributions to nJ(F–F) in Di-F-polyenes.
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A recent study of the intramolecular proton transfer mechanism in ortho-hydroxyaryl
substituted Schiff bases with the B3LYP-DFT and SOPPA schemes shows that one can
predict the dependence of both parameters, 1J(15N1H) and �(15N), with the distance
d(NH) on OH and NH tautomers [36]. An inflection point is found when each NMR
spectroscopic parameter is expressed as a function of d(N–H). The same happens when the
correlation between both parameters, J and �, is depicted. The analysis of these (cubic)
functions shows whether the proton is bound to the oxygen or to the nitrogen atom, or it is
shared by both atoms. In line with these findings, it is possible to predict the position of the
proton in the bridge, which is supported by previous experimental measurements.

3.2. Semi-empirical models: CLOPPA

The CLOPPA model was developed mainly to analyse NMR-J couplings in term of ‘local’
contributions. The corresponding shielding analysis was not implemented. It is based on a
decomposition of J as a summation of contributions from individual coupling pathways
involving two virtual excitations i! a and j! b with i, j (a, b) occupied (vacant) localized
MOs (LMOs) that belong to the local ‘L’ fragment of interest:

JMN ¼
X
ia,jb

J
LðX Þ
MN;ia,jb: ð53Þ

This allows one to extract some crucial information on transmission mechanisms involved
in the propagation of a given specific magnetic perturbation, say X (X¼FC, SD or PSO).

A given semi-empirical ground state wavefunction can be used as the reference state of
polarization propagator calculations [13–15]. The CLOPPA scheme is based on this
assumption, at the RPA level of approach, together with the use of localized molecular
orbitals [62]. It was first implemented at the INDO level [63]. With such an approach,
indirect nuclear spin coupling constants can be calculated for molecules containing first-
and second-row atoms as well as Se and Te. Some years later similar schemes [71–73,117]
were implemented at the MNDO [64], AM1 [65], PM3 [66] and INDO/S [67] levels of
approach.

There are several basic physical assumptions considered in the implementation of
CLOPPA schemes: (i) the transmission of J-couplings involves largely molecular valence
electrons; (ii) relativistic effects modify (strongly for heavy atoms) the one-electron
wavefunctions and therefore the electronic densities within the regions close to the heavy
atomic nuclei where the electronic mechanisms for J-couplings are more important;
(iii) both the electronic density at the nuclear sites (S2

Mð0Þ), and the hr�3i average value
corresponding to the p-type atomic orbitals can be considered as atomic parameters.
Their values were taken from relativistic multi-configurational Dirac–Fock ab initio
theoretical calculations [68].

Each term of the sum in Equation (53) can be written as (see Equation 50)

JXMN;ia,jb ¼ UX
M,iaU

X
N,jb þUX

N,iaU
X
M,jb

� �
mPia, jb ð54Þ

where UX
M,ia is a measure of the strength of the virtual excitation i! a due to the

perturbation X; m¼ 3 for X¼FC or SD, and m¼ 1 for X¼PSO. The principal propagator
mPia, jb gives the response of the molecular fragment connecting the two virtual excitations
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i! a and j! b. For a CLOPPA calculation the principal propagator matrix is evaluated
in such a way that the whole molecule is described in terms of LMOs.

The perturbators within the CLOPPA method are implemented at the semi-empirical
level using a one-centre approximation, and for the FC mechanism they have the form:

UFC
M,ia ¼ hij�ðrMÞjai ¼ Cs

i,MCs
a,MS 2

Mð0Þ ð55Þ

where the coefficients Cs
iðaÞ,M are those of s-type orbitals belonging to atom M.

The main successful applications of the semi-empirical CLOPPA model were on the
understanding of electronic mechanisms that underly NMR-J couplings in cases where
it was able to reproduce experimental trends qualitatively or semi-quantitatively.
In particular the application of CLOPPA-X (X¼MNDO, AM1 and INDO/S) on
molecules containing heavy atoms gave semi-quantitative reproduction of experimental
results in molecules where it was not possible (until the late 1990s) to apply ab initio and
fully relativistic, semi-relativistic or quasi-relativistic theoretical methods due to their large
computational cost. We should mention that currently one still cannot calculate NMR-J
couplings for medium-size molecules containing more than three heavy atoms with
fully and ab initio relativistic methods at second-order correlated levels, though DFT and
ab initio RPA are available.

Calculations that reproduce experimental results in a qualitative or semi-quantitative
manner were performed with AM1 and INDO/S semi-empirical wavefunctions for SnH4,
SnMe4, S(SnMe3)2, and X2Me6 (X¼ Si, Sn and Pb). From these results one can go one step
further and analyse the electronic mechanism that underlies the total J value. There are
several review articles [69,70] where these criteria were applied. It is worth mentioning that,
for instance, there are no calculations of J with fully relativistic methods for S(SnMe3)2
where the CLOPPA-INDO/S method gives quite approximate results. Some other
calculations on medium-size tin-containing molecules (1,2,4,5-tetrastannacyclohexanes
with Me substituents) are given in [71].

We want to comment here on two of the most important insights that arise when
applying the CLOPPA model: the electronic origin of both the sign of J-couplings and
the Karplus rule.

The absolute sign of J can be experimentally measured [74,75], so it deserves a search
for its physical origin. There is an old model that was used for decades by experimentalists
[76], the Dirac–Peeney model. It is known that it fails to explain the sign of several
couplings, e.g. one-bond and two-bond couplings of special systems like formaldehyde and
F-methane. The Dirac–Peeney model is based on the FC mechanism; from Equation (40)
and assuming that �M is positive, the model predicts that the magnetic energy becomes
stabilized when the electron spin is antiparallel to the nuclear spin. As a consequence,
the molecular system is more stable when all coupled nuclear spins are antiparallel
(see Equation 19). This model predicts positive one-bond J-couplings and negative
two-bond J-couplings. Nevertheless, it is known that the geminal 2J(H–H) is positive
in formaldehyde.

In calculations performed with the CLOPPA model one observes that only one of the
two terms that contain perturbators in Equation (54) contributes significantly, while the
other is vanishingly small. Another important point is the fact that all diagonal matrix
elements of the principal propagator, i.e. Pia,ia, are negative. This is not the case for
non-diagonal elements but then it is always allowed to change the sign of the pair of
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elements 3Pia,jb and UFC
ia without any change of the sign of J. Then we see that when

different coupling pathways Jia,jb have different relative signs it should be related to the
relative signs of equivalent perturbators. As shown in Table 1 there is only one pathway
(�1�

�
1 , �2�

�
2 ) giving a negative contribution to geminal coupling H–H in formaldehyde,

while the rest are positive. This negative term corresponds to the Dirac–Peeney vector
model prediction. Nevertheless, since the positive contributing coupling pathways are
larger in absolute value, the total J-coupling is positive, in agreement with the
experimental evidence. Then, we can analyse the reason for the opposite sign for those
coupling pathways. The sign of a perturbator UFC

M,ia has an implicit relation between the
phases of the LMOs involved in the virtual excitation i! a at the site of the nucleus M.
Its sign is positive when both LMOs have the same phase. Within the CLOPPA model the
sign of each coupling pathway is defined by the sign of the two main perturbators UFC

M and
UFC

N for the given coupling pathway [77]. As observed in Table 1 the sign of the first term
arises from the product between U�1��1 ;H1

and U�2��1 ;H2
. The sign of these two perturbators

is opposite, thus meaning that the relative phases of both virtual excitations at the site
of both nuclei are opposite; that is, the phases of the bonding and antibonding LMOs
of the virtual excitation �1! ��1 at the site of the nucleus H1 are similar but the phases of
the bonding and antibonding LMOs of the virtual excitation �2! ��1 at the site of the
nucleus H2 are different. Another example is also given in the same Table 1 for the
one-bond coupling C–F in CH3F. We show only two terms which are by far the most
important. One is diagonal and positive as it should be, the other is non-diagonal, negative
and larger in absolute value than the first one. For the largest coupling pathway one of the
two excitations starts from the LP. The relative phases of both perturbators are similar
and so the contribution of the coupling pathway is negative. Then we can conclude
that the origin of the sign of J due the FC mechanism arises from the relative phases of the

Table 1. Contributions of the main coupling pathway terms (in Hz) and their perturbator and
principal propagator elements for 2J(H–H) in formaldehyde and 1J(C–F) in CH3F.

CH2O

i a j b Jia,jb Pia,jb Uia,H2
Ujb,H1

Uia,H1
Ujb,H2

�a1 ��1 �2 ��1 18.43 �0.81 �0.003 0.028 0.266 �0.028
�1 ��1 �2 ��2 �7.04 �0.03 �0.003 �0.003 0.266 0.266
�1 ��2 �1 ��2 4.47 �1.85 �0.028 0.028 0.028 �0.028
�1 ��1 �1 ��1 7.18 �2.97 0.003 0.266 �0.266 0.003

CH3F

i a j b Jia,jb Pia,jb Uia,F Ujb,C Uia,C Ujb,F

�bb ��b �b ��b 452.72 �2.40 �1.036 0.254 0.254 �1.036
LP ��b �b ��b �538.84 �0.75 4.008 0.254 0.014 �1.036

a�i and ��i are the bonding and antibonding LMOs corresponding to each of two C–Hi

bonds (i¼ 1, 2).
b�b and ��b are the bonding and antibonding LMOs corresponding to the C–F bond. LP means
lone-pair.
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LMOs intervening in the given coupling pathways at the site of the nuclei involved [76].

The CLOPPA model generalizes the previous Dirac–Peeney model in a natural manner.
In NMR spectroscopy there is a rule that is widely used for interpreting or predicting

NMR spectra: the Karplus rule [78,79]. It is concerned with the vicinal indirect coupling

of two magnetically coupled nuclei. It is independent on the type of coupled nuclei and

shows the harmonic dependence of J on the dihedral angle between both coupled nuclei.

Several authors have given different explanations [80–85]. We will concentrate on ours

that arises by applying the CLOPPA model. The origin of this rule is more related to the

description of the molecule as a whole than on the precise local interactions like those

defining the sign of J. Since an extensive explanation was given elsewhere [76,86] we shall

give only a sketchy presentation of the CLOPPA model explanation of the Karplus rule.
From Equation (39) and expressing the principal propagator matrix as a series for

the FC mechanism [52,87]

M�1
� �

ia, jb
/ GþHð Þia, jb, ð56Þ

where

Gia,jb 
 haj jbi i ¼

Z
 �að1Þ 

�
bð1Þr

�1
12  j ð2Þ ið2Þdr1dr2, ð57Þ

and

Hia, jb 
 habj ji i ¼

Z
 �að1Þ 

�
j ð1Þr

�1
12  bð2Þ ið2Þdr1dr2: ð58Þ

The matrix G is called the Coulomb matrix because its diagonal terms represents a

Coulomb interaction between two electrons: one in a virtual state, a¼ b, and the other

in an occupied state, i¼ j. The matrix H for the same orbitals is then an exchange

integral matrix. Let us analyse again the nuclear spin indirect couplings in terms of

pathways. It has been observed that all pathway contributions for vicinal couplings follow

the Karplus rule [86]. Furthermore, for the most important terms the principal propagator

is found to satisfy a Karplus-like dependence too. In general, the coupling pathway term

that gives the main contribution is of the form J�1��1 , �2�
�
2
, where the two excitations refer to

the two bonding–antibonding LMOs which contain the coupled atoms and the closest

atom bonded to them; for them, the Coulomb and exchange interactions are

G�1��1 , �2�
�
2
¼

Z
��1 ð1Þ�

�
2 ð1Þr

�1
12 �2ð2Þ�1ð2Þdr1 dr2 ð59Þ

and

H�1��1 , �2�
�
2
¼

Z
��1 ð1Þ�2ð1Þr

�1
12 �
�
2 ð2Þ�1ð2Þdr1 dr2: ð60Þ

It is seen that in both cases electron 1 belongs to two different LMOs that are close to the

coupled nuclei, e.g.  ��
1
(1) and  ��

2
(1) or  �2(1). Then, we can say that a Karplus curve

arises from a new type of entanglement, since for second-order properties we must consider

two simultaneous excitations, one for each of two ‘entangled’ or ‘disentangled’ electronic

wavefunctions. If and only if at least one of the two excitations is entangled, the
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corresponding principal propagator matrix element will follow a Karplus-type behaviour
with the dihedral angle. In other words, the Karplus rule arises as a non-local electron
interaction that connects instantaneously the two coupled nuclear spins.

4. Relativistic polarization propagator

The relativistic generalization of polarization propagators was introduced by one of
us together with Oddershede 20 years after the formulation of its NR theory [16].
Its time-reversal restricted formulation opened the door to Kramer restricted operators
[23] and its implementation in a computational code (named DIRAC [88]) for calculation
of response properties. We shall give here a brief introduction to the Dirac formalism,
the formal extension of polarization propagators to the relativistic regime, the new
insights that one obtains when the time-reversal symmetry is applied to it, and some
specific applications on usual test systems. Then we shall go one step further in order to be
able to apply the full machinery of the QED formalism to the understanding of magnetic
molecular properties.

The free-particle Dirac equation is written in non-covariant form as

hD ðxÞ ¼ ca � pþ 	mc2
� �

 ðxÞ ¼ E ðxÞ: ð61Þ

Multiplying by 	/c one obtains a covariant (i.e. Lorentz invariant) form of the equation

ð��p� �mcÞ ðxÞ ¼ 0 ð62Þ

where �0
 	, �i
 	�i, ��¼ (�0, c) and p�¼ (E/c, �p), so that ��p�¼ �
0p0� � � p. In these

equations �¼ (�x,�y,�z) are the 4� 4 Dirac matrices, which are written in the standard
representation in terms of the 2� 2 Pauli matrices r¼ (�x, �y, �z) as

a ¼
0 r

r 0

� �
, ð63Þ

and

�0 ¼
1 0

0 �1

� �
, � i ¼

0 r

r 0

� �
: ð64Þ

If an equation is covariant it means that it will have the same form when written in any
reference frame. The left-hand side of Equation (62) is invariant under a Lorentz
transformation because it is a scalar. Written in this form it is easier to get its energy
spectra. So for one Dirac particle at rest (p¼ 0) Equation (62) is written as

�0p0 ¼ mc or p0 ¼ mc�0 : ð65Þ

Given that the operator �0 has doubly degenerate eigenvalues �1, one obtains two
positive-energy solutions and two negative-energy solutions. When p 6¼ 0 there are doubly
degenerate eigenvalues of E¼�(m2c4þ p2c2)1/2. There are two branches of continuum
energies that must be considered. The lower branch is related to antiparticles (we shall
give more details in Section 5.3), though their states are not antiparticle states, but
negative-energy electron states. The corresponding antiparticle states can be obtained
by charge-transforming them ( ! C) and then considering the ‘absence’ of electrons
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occupying negative-energy states [89]. Negative-energy electronic states should not be

identified as positron states.
In what follows we shall consider the interaction of such a system with an applied

external static field. Such an interaction is introduced by the minimal-coupling

replacement [90]

�� p� �
Q

c
A�

� �
þmc ðxÞ ¼ 0 ð66Þ

where the 4-vector A�¼ (A0, �A) includes both the external field and that originating

in charged spin-12 particles, and Q is the electric charge of the particle (Q¼�e for electrons

and þe for positrons).
Under NMR experimental conditions the molecular system is perturbed by a relatively

weak external field. So, within the relativistic domain (similarly as the NR description)

the total electronic Hamiltonian can be written as the sum of the unperturbed H0 and the

perturbation Hamiltonian H1:

H ¼ H0 þH1 ¼ HD þ VC þH1, ð67Þ

where HD is the N-electron Dirac Hamiltonian,

HD ¼
X
i

hDði Þ ð68Þ

and VC is the two-electron Coulomb interaction operator. The interaction of an N-electron

system with an external magnetic field is also accounted for by the minimal coupling

prescription used in Equation (66) for a one-particle system, whose spatial expression is

p! p� e
cA, leading to the introduction of the perturbation Hamiltonian

H1 ¼ eca � A ð69Þ

where A¼AMþAB is the sum of the nuclear and the external vector potentials

AM ¼
1

c2
lM � rM

r3M
ð70Þ

and

AB ¼
1

2
B� rG ¼

1

2
B� ðr� RGÞ ð71Þ

where RG is the gauge origin, rM¼ r�RM and r and RM are the coordinates of the

electron and the nucleus M, respectively.
Considering both the nuclear and the external vector potentials of Equations (70)

and (71), we have

H1,M ¼ eca �
1

c2
lM � rM

r3M
þ
1

2
B� rG

� �

¼ �
e

c
�h�MIM �

�� rM

r3M

� �
� ecB � a� rGð Þ:

ð72Þ
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Solutions of the Dirac equation for one-electron systems are bounded from below. When
the number of particles is greater than one there appear severe problems in getting eigen
solutions variationally. The way it was overcome was applying positive-energy projection
operators. In the case of many-electron Dirac–Hartree–Fock calculations, Mittleman
suggested the use of projection operators that included the Hamiltonians HD and HC of
Equation (67) in such a way that projection operators are continually updated during the
iterative solution of the DHF equations [91]. This is then applicable to variational models
like the single-determinant DHF. It is worth remarking that from this procedure one gets
both kinds of solutions, i.e. positive-energy and negative-energy one-electron states.
Details are given elsewhere [29,91,92].

Once we express the unperturbed Hamiltonian as (see Equation 24)

H0 ¼ HDF þ V, ð73Þ

and use the DHF ground state as the reference state, all the equations of Section 2 are
valid. It must be recalled that the molecular orbitals have four components (as opposed
to one-component or Schrödinger type) and all operators are written as 4� 4 matrices.

From Equations (17), (69) and (72), the second-order perturbative correction to the
energy is written as

E ð2Þ ¼
1

2
RehhH1;H1ii

¼
1

2

e�h

c

2X
MN

�M�NIM �Re
�� rM

r3M
;
�� rN

r3N

� �� �
� IN

þ
e2�h

2

X
M

�MIM �Re
a� rM

r3M
; a� rG

� �� �
� B: ð74Þ

Finally, from Equations (20) and (21) the fully relativistic expressions of the NMR
spectroscopic parameters are obtained as

JMN ¼
e2�h2

h
�M�N

a� rM

r3M
;
a� rN

r3N

� �� �
, ð75Þ

and

rM ¼ e2
a� rM

r3M
; a� rG

� �� �
: ð76Þ

From these equations it is observed that there is a single electronic mechanism involved
in both NMR spectroscopic parameters. Furthermore, there is no distinction between
diamagnetic and paramagnetic terms. This fact is something completely new and the
search for its explanation gave us the opportunity to gain new insights into the electronic
origin of molecular magnetic properties.

4.1. Second-quantized operators, field operators and time-ordering

The Dirac equation is not, as a matter of fact, a one-body equation but a many-body one
due to the whole negative-energy branch of the spectra. One may consider this branch
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from different points of view depending on the definition of the vacuum state, what gives

way to different pictures, namely, the hole, empty-Dirac and QED pictures. In the hole

picture one considers that the whole negative-energy branch is occupied by electrons

forming the Dirac sea; both in the empty-Dirac picture and in the QED-picture the

negative branch is empty. Then Dirac solutions naturally introduce new particle states

different from the usual positive-energy electron states. In a fully relativistic formalism,

sooner or later one is forced to consider (it may be neglecting) them.
One way to introduce such states into consideration is through the application of the

second-quantized formalism, largely used within the NR domain. As a prelude to the QED

section we introduce here Dirac wavefunctions as (field) operators. This fact will enable

us to work with (particle) states that can be created or annihilated. A given (field) operator

can be decomposed in terms of a basis analogously to a Fourier decomposition of

function.
For free particles the general solution of the Dirac equation is a linear combination

of plane-wave solutions of Equation (61):

 þðxÞ ¼ exp �ik � xð ÞuðkÞ,

 �ðxÞ ¼ exp ik � xð ÞvðkÞ ð77Þ

being the upper, two-component positive-energy solutions, and the lower, two-component

negative-energy solutions. There are also the position 4-vector x
 (x0, r) and the

4-momentum k
 (k0,k)¼ (E/c, k). In this case a wave packet is written as

 ðt, rÞ ¼

Z
d 3k

ð2�Þ3
m

E

X
�¼1,2

½a
ð�Þ
k u
ð�Þ
k exp �ik � xð Þ þ ~a

�ð�Þ
k v

ð�Þ
k exp ik � xð Þ�: ð78Þ

The factor [m/(2�)3/E] is chosen for convenience in the normalization. This wave packet

can be written in a completely similar fashion for bound-state systems, and the coefficients

a and ã* are transformed into annihilation and creation operators, when the wavefunction

 (t, x) is written as a wave operator  ̂ðt, xÞ as required in QED.
The notion of propagators is naturally extended to the relativistic regime. When

considering free propagation, given that the Dirac equation is a first-order equation, it is

possible to obtain, as in the NR case,

 ðtf, rf Þ ¼

Z
Kðtf, rf; ti, riÞ�

0 ðti, riÞdri: ð79Þ

After some manipulation and the introduction of the coefficients a
ð�Þ
k and ~a

�ð�Þ
k as a

function of  (t¼ 0, r) one ends up with [93]

Kðxf, xiÞ ¼ �ðtf � tiÞ

Z
d3k

2Eð2�Þ3
ð��k� þmÞ exp �ik � ðxf � xiÞ

� ��
þ ð��k� �mÞ exp ik � ðxf � xiÞ

� �	
: ð80Þ

This kernel K is the retarded propagator Kret. Now, based on the electron–hole theory

we introduce a different Green’s function which is called the Feynman propagator for

the electron–hole system. When considering only electrons occupying positive-energy

electron states, creation, propagation and annihilation processes are acceptable for tf4 ti.
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On the other hand, if we deal with a negative-energy electron, we would interpret its

annihilation as the appearance of a hole (positron), and vice versa. The propagation

should then be considered as the propagation of the positron from xf to xi which make

sense only for tf5 ti. Therefore in the electron–hole theory we would construct a Green’s

function that propagates the positive-energy solutions only for tf4 ti and the

negative-energy ones only for ti4 tf:

SFðxf,xiÞ ¼ �i

Z
d 3k

2Eð2�Þ3
�ðtf � tiÞð�

�k� þmÞ exp �ik � ðxf � xiÞ
� ��

� �ðti � tf Þð�
�k� �mÞ exp ik � ðxf � xiÞ

� �	
: ð81Þ

By using the integral representation of �(t) and changing variables, p0¼�(E�!) and

p¼�k, one gets the usual integral form of the Feynman propagator

SFðxÞ ¼

Z
d4p

ð2�Þ4
exp �ip � xð Þ

��p� þm

p2 �m2 þ i


¼

Z
d4p

ð2�Þ4
exp �ip � xð ÞSFð pÞ: ð82Þ

The Feynman propagator can be understood as follows: it propagates the positive-

frequency particles (positive-energy electronic wavefunctions) forward in time and

negative-frequency (negative-energy electronic wavefunctions) backward in time.
Can we express the Feynman propagator of Equation (82) as a time-ordered product

of operators?We want to stress the relationship of such Feynman propagators (see Eq. (95))

with the definition of polarization propagators within NR domain (see Eq. (4)). We shall

consider now the particle–hole wavefunction  (x) of Equation (78) as a field operator  ̂ðxÞ

 ̂ðxÞ ¼

Z
d 3k

ð2�Þ3
m

k0

X
�¼1,2

½â�ðkÞu
�ðkÞ exp �ik � xð Þ þ ~a�ðkÞv

�ðkÞ exp ik � xð Þ�: ð83Þ

Its complex conjugate is

�̂ ðxÞ ¼

Z
d 3k

ð2�Þ3
m

k0

X
�¼1,2

½ây�ðkÞ �u
�ðkÞ exp ik � xð Þ þ ~ay�ðkÞ �v

�ðkÞ exp �ik � xð Þ�: ð84Þ

The time-ordered product of two Dirac field operators is defined as

T ̂�ðxÞ �̂ �0 ð yÞ ¼ �ðtx � tyÞ ̂�ðxÞ �̂ �0 ð yÞ � �ðty � txÞ �̂ �0 ð yÞ ̂�ðxÞ, ð85Þ

where the subscripts � and �0 label the components. Then,

T ̂�ðxÞ �̂ �0 ð yÞ ¼ h0jT ̂�ðxÞ �̂ �0 ð yÞj0i þ :  ̂�ðxÞ �̂ �0 ð yÞ : , ð86Þ

where the symbol : : stands for a normal-ordered product where every creation operator

is written to the left of every annihilation operator. From this definition,

h0jjT ̂�ðxÞ �̂ �0 ð yÞj0i ¼ iSFðx� yÞ�� 0 : ð87Þ

International Reviews in Physical Chemistry 25

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



For bound-state electronic systems, the plane-wave expansion is no longer adequate and

a proper expansion should be given in terms of stationary solutions of the Dirac equation

which can be written as

 nðrÞ ¼
u�nðxÞ, for En � 0

v�nðxÞ, for En 5 0

�
ð88Þ

with the corresponding time-dependent solutions given by

 nðxÞ ¼
u�nðxÞ exp �

i
�h Ent

� �
, for En � 0

v�nðxÞ exp
i
�h Ent
� �

, for En 5 0:

(
ð89Þ

Then the electron–hole field operator is expanded now in terms of electron–hole

annihilation operators as

 ̂ðxÞ ¼
X
En40

an nðxÞ þ
X
Em50

~am mðxÞ ð90Þ

with an being the electron annihilation operator for an electron in a state n (En4 0) and ãm
is the electron annihilation operator for an electron in a state m (Em5 0). Given that

we will be concerned with the empty-Dirac picture (see [94] and Section 5.1) where

the negative-energy branch of the electronic spectra is unoccupied, we will continue to

consider that ~aym (ãm) is the electron creation (annihilation) operator in a negative-energy

state. In Section 5 the relation of negative-energy electronic states with positronic states

will be given in more detail. Creation and annihilation operators fulfil the conventional

anticonmutation relations

fan, a
y
mg ¼ �nm; fbn, b

y
mg ¼ �nm ð91Þ

and all other anticonmutators are zero. The corresponding propagator SF for bound-state

QED is

iSFðx� yÞ ¼ h0jTf ̂ðxÞ ̂ð yÞgj0i

¼
X

En40,tx4ty

 ̂nðxÞ �̂ nð yÞ �
X

En50,tx5ty

 ̂nðxÞ �̂ nð yÞ

¼ �ðtx � tyÞ
X
En40

 ̂nðxÞ �̂ nð yÞ � �ðty � txÞ
X
En50

 ̂nðxÞ �̂ nð yÞ: ð92Þ

In general, we can state that for two fermion or boson field operators the Feynman

propagators are defined as a contraction of both fields. They are defined as the difference

between time-ordering and normal-ordering of the operators involved:

h0jP̂Q̂j0i ¼ TðP̂Q̂Þ �NðP̂Q̂Þ, ð93Þ

and because of the Lorentz-invariance of this operation, it becomes very useful when

working within the relativistic domain. If the product P̂Q̂ is written in normal-ordering

the last term does not contribute to the propagator given that propagators are defined

as the expectation value of the time-ordering product of operators P and Q in a given
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reference state. The result of a contraction is a complex number. The time-ordering is
defined for fermion or boson fields as

TP̂ðxÞQ̂ð yÞ ¼ �ðtx � tyÞP̂ðxÞQ̂ð yÞ � �ðty � txÞQ̂ð yÞP̂ðxÞ ð94Þ

where the plus (minus) sign is applied for bosons (fermions). For the polarization pro-
pagators both operators P and Q are bosons. Then their generalization to the relativistic
regime is natural:

ihhP̂ðxÞ; Q̂ð yÞii ¼ �h� tx � ty
� �

h0jP̂ðxÞQ̂ðyÞj0i þ �h� ty � tx
� �

h0jQ̂ðyÞP̂ðxÞj0i: ð95Þ

From this definition polarization propagators are covariant and it will be used in the QED
section to discuss the gauge invariance of the sum of diamagnetic and paramagnetic terms.

4.2. Kinetic balance

There are some subtleties that arise only within the relativistic domain. One of them is the
so-called kinetic balance condition which states a constraint on the relationship between
the large (upper two) and small (lower two) components of each Dirac one-electron
wavefunction. This is a necessary condition which ensures the correct NR behaviour of
a Dirac wavefunction. The Dirac equation is not bounded from below for an N-electron
system because it admits an infinite number of negative-energy states and no
minimum-energy principle can be used to obtain a variational approximation to the
ground state. This was dubbed variational collapse. The solution to this problem was
suggested 25 years ago [91,95]. Each small component function must be kinetically
balanced by a large component function to ensure that the kinetic energy will be correctly
calculated, even in the non-relativistic limit.

The relativistic wavefunction solution of the time-independent one-electron
Dirac equation in a static potential V (see Equation 66) provided by the nuclei in the
Born–Oppenheimer frame can be written as

 ðr, tÞ ¼
 Lðr, tÞ

 Sðr, tÞ

� �
: ð96Þ

With this consideration, the Dirac equation can be written as a pair of coupled equations

ðV� EÞ L þ cð� � pÞ S ¼ 0, ð97Þ

cð� � pÞ þ  L þ ðV� E� 2mc2Þ S ¼ 0, ð98Þ

and so the small component can be written as

 S ¼
1

2mc
1þ

E� V

2mc2

� ��1
cð� � pÞ L: ð99Þ

In the limit c!1 the squared bracket tends towards unity in such a way that one obtains
the kinetic balance prescription

lim
c!1

c S ¼
ð� � pÞ

2m
 L: ð100Þ
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Given that in actual calculations the kinetic balance prescription can be fulfilled in two

general forms we give a brief description of the way one applies kinetic balance in a

restricted or unrestricted way.
In our calculations, a Gaussian basis set is used because it allows us to evaluate

multi-centre integrals in a straightforward manner. The Cartesian Gaussian functions

can be written as

G�ijk ¼ Nxiyjzke��r
2
A , ð101Þ

where N is a normalization constant, A the nuclear centre, and the scripts i, j, k define the

quantum angular number ‘:

G�‘ ¼ G�ijkj8 ðiþ jþ kÞ ¼ ‘
n o

: ð102Þ

It is possible to transform them to a set of two-spinor spherical Gaussian functions of

the form

G�nkmj
¼ Nrn�1A e��r

2
A�kmj

ð�,Þ ð103Þ

where �kmj
is the angular part of the hydrogenic solution of the Dirac equation. Therefore

this corresponds to the large component of the Dirac wavefunction. From Equation (100),

for each large component function with angular quantum number ‘, we get two small

component functions with ‘þ 1 and ‘� 1 angular quantum numbers:

�L / �L / �LðrÞ ¼ G�‘
� 	

) �S / �S / �SðrÞ ¼ c‘�1G
�
‘�1 þ c‘þ1G

�
‘þ1

� 	
ð104Þ

where c‘�1 and c‘þ1 are constants. This is the restricted kinetic balance, RKB. It is also

possible to keep both types of small basis functions as separate functions, i.e.

�L / �L / �L�ðrÞ ¼ G�‘
� 	

) �S / �S / �S�ðrÞ ¼ c‘�1G
�
‘�1

� 	
[ c‘þ1G

�
‘þ1

� 	
ð105Þ

in which case we obtain the unrestricted kinetic balance, UKB. In the RKB prescription

there is approximately a 1 : 1 ratio between the large and the small component basis set.

On the other hand, in the UKB prescription each generated Gaussian function is

independently used as a basis function and then it produces a 1 : 2 ratio between the size

of the large and small component basis approximately. This increases the size of the small

component basis set and so improves the description of the continuous negative-energy

space.
The basis set used in actual calculations is, of course, not complete. One should be

aware that getting an equivalent basis-set convergence with either prescription may

require equivalent total basis sets. What about the computational time required? As shown

in [96] the CPU time savings are larger when calculations are performed with the UKB

prescription.
There is another implementation of kinetic balance. This takes into account the

external fields and uses a magnetically balanced small component basis set which may help

in practice to achieve converged results [29,97]. However, within the polarization

propagator formalism this is not formally necessary because the molecular wavefunctions

used in the response calculations are the zeroth-order solution of the Dirac equations.
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4.3. Symmetries that can explain relativistic molecular magnetism

Any operator can be written in terms of time-reversal restricted basic excitation operators,
the X operators, known as Kramers single replacement operators [23,94]. There are two
types of X operators, depending on both the symmetry under time-reversal and the
hermitian conjugation of the operators, say Ô, being represented as an expansion on the
X operator basis:

X̂s
pq ¼ aypaq þ sayqap,

X̂s
�pq ¼ ay�paq � say�qap,

X̂s
p �q ¼ aypa �q � sayqa �p,

ð106Þ

where s¼� depending on whether the operator Ô is time-reversal symmetric (TRS) and
hermitian (þ) or not (�). In such an X-basis any one-particle hermitian and TRS operator,
like the Hamiltonian, is written as

Ô ¼
X
pq

OpqX̂
þ
pq þ

1

2
O �pqX̂

þ
�pq þOp �qX̂

þ
p �q

� �� �
: ð107Þ

If the operator Ô is time-reversal antisymmetric or antihermitian, it should be expanded
in terms of X�. This is the case for the binary products involving perturbators
(see Equation 14) because they are time-reversal antisymmetric.

The binary products, i.e. the property matrix elements, will contain two type of
elements in two different sub-blocks. We mean elements which contain virtual
positive-energy states and elements which contain virtual negative-energy states.
Considering the elements with excitations to positive-energy MOs one can find an
equivalent expression to Equation (14):

~Pe ¼ P̂yjX̂þia

� �
¼
X
pq

Ppqh0j X̂
�
pq, X̂

þ
ia

h i
j0i þ � � � ,

¼
X
pq

Ppqf�qih0jX̂
þ
paj0i � �aph0jX̂

þ
iqj0ig ¼ �2Pai: ð108Þ

On the other hand, elements with excitations to negative-energy states will give only the
Pãi elements for the property matrix.

Calculation of Equation (6) in the Kramers basis means

hhP̂; Q̂iiE ¼ P̂yjX̂þ
� �

~̂
X
þ
jEÎ� Ĥ0jX̂

þ
� ��1 ~̂

X
þ
jQ̂

� �
: ð109Þ

At the RPA level of approach the new matrices A written in the X-basis are

Aia, jb ¼ �h0j X̂ia X̂bj, Ĥ0

h ih i
j0i

Ai ~a, j ~b ¼ �h0j X̂i ~a X̂j ~b, Ĥ0

h ih i
j0i:

ð110Þ

When considering both excitations from an occupied MO to positive- and to
negative-energy MOs one can get an equivalent expression to that of Equation (34):

hhP̂; Q̂iiRE ¼
~Pe, ~Pp,

� � Aee Aep

Ape App

� ��1
Qe

Qp

 !
: ð111Þ
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The NR limit of each block gives the spin-restricted expressions. Then the principal

propagator can be split up in four blocks: the diagonal blocks belong to excitations to

only positive- or only negative-energy MOs. The off-diagonal parts contain a mix of

excitations. These last parts are a factor of 1/c smaller than the diagonal [29]. We will use

this fact when we look for recovering the NR diamagnetic and paramagnetic terms.
The particular blocking of Equation (111) is quite similar to the original interpretation

of the electron’s motion given recently by Roger Penrose [98]. He considered the electron’s

motion as consisting of two kinds of particles: the zag and the zig particles. The first one

is a right-handed particle and its counterpart, the zig particle, is of left-handed type.

Each particle is the source of the other. Then the electron’s motion is composed of a

zig-zag process, where a zig particle is continually being converted into a zag particle

and back again.
On the other hand, each zig-zag process contributes to an infinite quantum

superposition, to the total propagator in the manner of a Feynman graph as observed

in Figure 2. There are all kinds of zig-zag processes where one has one, two, . . . , such basic

processes. The propagator can be constructed as a combination of all of them. In the

diagonal part one gets the principal processes, i.e. the zig or the zag ones including then

an odd number of other zag or zig processes; the off-diagonal elements are composed

of mixtures of zig-zag or zag-zig processes from the very beginning.
One can associate each zag contribution with excitations to positive-energy MOs

(the ee part of Equation 111) and each zig contribution with the excitation to any

negative-energy MO (the pp part). The off-diagonal elements of the principal propagators

are equivalent to a mix of zig-zag (the pe part) and zag-zig (the ep part) processes.
There is an interesting point that we want to highlight here. Within the

four-component formulation one has only one electronic mechanism that is responsible

for each of both NMR spectroscopic parameters; and also if one considers the whole

principal propagator matrix one cannot distinguish the paramagnetic from the

diamagnetic terms. On the other hand, as will be shown in Section 4.4, one can obtain

Figure 2. Zig-zag interpretation of electron propagator given by Penrose in [98].
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the NR limit only making c go to infinity. When expressed in terms of the X operators

we have shown that there is only one of them that can be used and they are of a

pseudo-singlet type [23]. This is a clear advantage for both calculation and interpretation

when comparing the full relativistic formulation of polarization propagators with its

NR counterpart. In the last case there are several mechanisms (FC, SD, PSO and DSO

for J-couplings), two of them of a triplet type (FC and SD) and the other two of a singlet

type. The NR limit is reached with only one condition. In case of including relativistic

corrections perturbatively, one should do it in an ad hoc manner, or through some

transformation scheme from four-component to two-component formulations. Then

what we have obtained is a formulation that is much simpler and introduces only one

mechanism for explaining each molecular magnetic property.
In the same manner, two concepts that are considered as completely different in an

NR formulation, i.e. paramagnetism and diamagnetism, do arise from the same scheme

of interactions (the same electronic mechanism) though there is still one that involves only

virtual electronic states and there is another that involves only virtual electron–positron

pair creations and annihilations. This will be treated in more detail in Section 4.4 and

also in Section 5.

4.4. Relativistic vs. NR understanding of electronic mechanisms

One should be very careful when trying to extend NR concepts to the relativistic domain.

It is healthy to highlight the fact that Ramsey’s formulation introduced perturbative

Hamiltonians as ad hoc Hamiltonians. He considered all interactions that must appear

and contribute to NMR spectroscopic parameters from a phenomenological NR point of

view [8–12]. Within the relativistic domain they do not appear as such though we get them

(and some others) starting from the proper perturbative Hamiltonian of Equation (72) and

making c go to infinity.
Diamagnetic terms arise by excitations from occupied MOs to virtual negative-energy

MOs as will be shown below. When the limit c!1 is taken, the negative-energy

spectra fall down to �1, which could appear as an inconsistency. We shall show in the

following that this is not the case even though there is a subtlety. It is convenient to discuss

separately each spectroscopic parameter. Let us first analyse magnetic shieldings.

As shown in [29] the total relativistic propagator can be approximated by the sum of

two terms

H1;H1h ih i 	 H1;H1h ih iee þ H1;H1h ih ipp

¼
X

ia, jb
b�iaðM

�1
ee Þia, jbbjb þ c:c:

� �
þ

X
i ~a, j ~b

b�i ~aðM
�1
pp Þi ~a, j ~bbj ~b þ c:c:

� �
ð112Þ

where ee and pp mean that only excitations to positive-energy and negative-energy

electronic orbitals are allowed, respectively. It is nicely seen that the hh ; iiee corresponds

to the equivalent paramagnetic term of either NMR spectroscopic parameters within the

relativistic domain, and hh ; iipp corresponds to the diamagnetic-like term.
In the negative-energy Ppp part of P we neglect O(c�2) terms and we neglect the

contribution of the O(c0) integrals h ~aj j ~bii compared with the energy difference ("ã� "i),
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which is of the order of �2mc2. We thus approximate App by a diagonal matrix A
pp
~ai, ~ai.

The negative-energy response function can thereby be written as

H1;H1h ih ipp 	
X
i, ~a

hijH1j ~aih ~ajH1ji i

"i � " ~a
: ð113Þ

Given that the excitations "i� "ã are such that [99]

2mc2 4 "i � " ~a 5 4mc2 ð114Þ

and using the resolution of the identity for Dirac’s one-electron states

H1;H1h ih ipp 	
e2

2m

X
i
fhijA2ji i �

X
j
hij� � Aj j ih jj� � Aji ig

�
e2

2m

X
i,a
hij� � Ajaihaj� � Aji i: ð115Þ

When c goes to infinity the last two terms go to zero. This would increase the values

of �d when passing from the R to NR domains.
Another interesting feature is related to the paramagnetic-like terms. In this case we

should consider the property matrix elements. As shown in Equation (76) there are two

such matrix elements. We first show that both relativistic property matrix elements go to

their Ramsey NR expressions. The explicit NR expressions for bia and bjb are given, within

the RPA level of approach and the RKB condition being imposed, as

i
e

c
� �
�M � rM

r3M

����
����a

� �
¼

e

c
�M � i

rM � �

r3M

����
����a

� �
!

e

2mc2
iL � �

�M � rM

r3M
, � � p

� 
þ

�����
�����aL

* +
: ð116Þ

Then after solving the anticommutator one obtains the NR bis. The NR expressions of bjt
are obtained in the same manner

h j j
ec

2
� � ðB� rGÞjbi�!h j

Lj
ec

2
f� � ðB� rGÞ, � � pgþjb

Li: ð117Þ

Here there is also an interesting subtlety. The Dirac position operator is not equivalent

to the Schrödinger position operator. Given that the Dirac operators � can be related

to the velocity operator, in both Equations (116) and (117) one has angular-momentum-

like operators. They are expressed as four-component matrix elements. Following the

development shown on pp. 65–66 of [89] there is a useful identity

mch j~r� ~�j i ¼ �hh j	 Dþ ðr� pÞð Þj i ð118Þ

which is not an operator identity though a matrix identity. In this case matrix elements are

obtained between the same states. The left-hand side refers to the instantaneous angular

momentum and the second term of the right-hand side the average angular momentum.

The factor 	 is the usual 1/(1� v2/c2)1/2. In the limit of c!1 the right-hand side of this

equality goes to

h ðLþ 2SÞi : ð119Þ
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Given that the factor 	 depends on the electron velocities, or in other words, will be larger
than 1 when c! 1 starting from c¼1, one can expect that both terms of Equations (116)
and (117) will be larger when calculated within the relativistic domain as compared with
their equivalent NR terms.

4.5. Application to model compounds

In this section we will focus on what the actual application of propagators can bring
us concerning relativistic effects on NMR spectroscopic parameters. We will concentrate
on two widely used molecules, HX and CH3X (X¼Br, I) for this kind of analysis. In
the next subsection we will treat some novelties concerning J-couplings and in the next we
will concentrate on shieldings.

The first calculations applying full relativistic propagators of electric response
properties appeared in 1997 [100] and calculations of magnetic response properties in
1999 [29,101,102]. They were obtained using DIRAC code that was written re-expressing
all equations within a quaternion algebra [103,104] which is completely equivalent to that
of the X operators, though they have several practical advantages.

4.5.1. New insights on NMR J-couplings from relativistic propagators

Electron correlation effects are in general important for J-couplings in saturated
molecules. What about relativistic effects? The dependence of 1J(C-X) for X¼F with
electron correlation in molecules like CH3X is more pronounced than in all other cases:
X¼Cl and Br as observed in Table 2. Still NR SOPPA results are more negative than NR
RPA for X¼F; for X¼Cl they are close to each other and correlation effects are
positive for X¼Br. In this last case relativistic effects have an opposite sign. If JR(SOPPA–
RPA)	 JNR(SOPPA–RPA) we would obtain 1JR(C–Br)	�50Hz. On the other hand,
for the CH3Br molecule relativistic and correlation effects on 1J(C–H) and 2J(H–Br) are
also opposite though also opposite to what we observe for 1J(C–Br) (see Figures 3 and 4).
Relativistic effects on 2J(H–Br) are positive, though correlation effects are negative.
We can predict that 2J(H–Br)	 15.50Hz. RPA or first-order correlation effects modify
J-couplings such that they become more negative (’30%) for 1J(C–Br) and more positive
(’20%) for 2J(H–Br). More pronounced behaviour is observed for 1J(HI) in the HI
molecule. Figure 5 shows the importance of including correlation effects. At the RPA
level of approach relativistic effects reinforce 1J(HI) by one order of magnitude. If the
percentage of the contribution of electron correlation is the same at both limits, R and
NR, the relativistic SOPPA would give 1J(HI)’�150Hz. What one can predict is that
1J(HI)� 0. We can compare the behaviour of this J-coupling with that of 1J(H–Br) (see
Figure 6). In this last case when including relativistic effects one could get a theoretical
coupling close to the experimental value: 62Hz [75].

4.5.2. New insights on magnetic shielding from relativistic propagators

For �(I; HI) the behaviour of � p and �d is opposite when c goes from 1 to1: � p becomes
more positive (it changes its ‘nature’) and �d more negative (see Figure 7). The overall
effect follows the behaviour of � p. The fact that � p changes its sign is further evidence
of the relative meaning of both terms which is based on gauge-invariant conditions at the
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Table 2. Comparative R and NR polarization propagator calculations of nJ (n¼ 1, 2) on CH3X
molecules (X¼F,Cl, Br, I) at different levels of approach.

Couplings R-PZOAa R-RPAb lim NR-PZOAc lim NR-RPAd NR-RPAe NR-SOPPAf

C–F �56.27 �133.14 �55.70 �131.87 �131.33 �173.79
H–C 51.26 191.02 51.09 190.34 190.55 153.18
H–F 13.44 62.07 13.41 62.63 61.18 49.27
H–H 0.66 �22.95 0.64 �22.98 �23.06 �11.56

C–Cl �4.06 �11.27 �3.97 �10.74 �10.45 �11.82
H–C 51.25 193.26 51.07 192.66 192.95 154.29
H–Cl 1.70 3.40 1.69 3.37 3.33 3.28
H–H 0.37 �25.42 0.35 �25.64 �25.90 �14.29

Br–C �14.11 �62.42 �13.81 �48.17 �49.32 �36.97
H–C 52.24 196.96 51.98 195.96 196.34 156.28
H–Br 7.81 17.59 7.65 14.67 15.59 13.76
H–H 0.83 �24.10 0.77 �24.39 �24.50 �12.99

I–C �12.15 �119.52 �11.28 �48.77 �51.20 �53.75
H–C 51.95 199.20 51.54 196.30 196.68 157.01
H–I 8.56 23.45 8.01 9.25 11.86 11.95
H–H 0.79 �24.60 0.67 �25.08 �25.35 �14.63

aRelativistic four-component calculation at PZOA level using the DIRAC program.
bIdem at RPA level.
cNon-relativistic limit calculation (c¼ 10) at PZOA level using the DIRAC program.
dIdem at RPA level.
eNon-relativistic calculation at RPA level using the DALTON program.
fIdem at SOPPA level.
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Figure 3. [Colour online] Relativistic and NR values of 1J(C–Br; CBrH3) at the PZOA, RPA and
SOPPA levels of approach.
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NR limit [75]. In Section 5 we will give a new insight into why this may happen. We show

that they arise only within a non-covariant QED formulation. Within a covariant

formulation (the only one that is valid) one is not allowed to distinguish between

them. Even within the proper relativistic formulation one should avoid expressing the

shielding as

� 6¼ � p þ �d: ð120Þ

The equality in this equation arises only as an approximation as shown in Equation (112).
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Figure 5. [Colour online] Correlation effects on J(H–I; HI) at the PZOA, RPA and SOPPA levels of
approach.
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Figure 4. [Colour online] Relativistic and NR 2J(H–Br; CBrH3) at the PZOA, RPA and SOPPA
levels of approach.
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Another important finding just obtained when considering c¼ 1, is the appearance
of paramagnetic-type contributions for closed shell atoms [105]. In Figure 7 we show
the behaviour of the paramagnetic-type and diamagnetic-type contributions when
c¼ 1, 2, . . . ,1. There is a smooth and quantitative convergence to its NR values, where
�p
 0. Relativistic effects are so dramatic that �R(Rn)’ 2�NR(Rn). From Equation (117)
one can see that the operator in the up right part does not have the same symmetry of an
angular momentum when acting on the small component of virtual MOs. This symmetry
is recovered at the NR limit.

As shown in Figure 7, differences between �p-like(I; HI) and �p-like(Xe) are such that for
iodine, in its NR limit, there is a negative contribution (’ �103) that becomes positive
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Figure 6. [Colour online] Correlation effects on J(H–Br; HBr) at the RPA and SOPPA levels of
approach.
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Figure 7. [Colour online] Relativistic and NR diamagnetic and paramagnetic contributions to �(Xe
and I; HI) at the RPA level of approach.
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when c¼ 1 (’þ103); in the case of �(Xe) this behaviour is similar though shifted to
more positive values such that the total value coincides with �d-like(Xe) at the NR limit.
This pattern is similar for Rn though much more pronounced.

Then we can try to figure out what kind of mechanism would be involved in the new
relativistic behaviour of �p-like. We have studied the tendency for the shielding of all atoms
belonging to the same row as Xe and being the heavy atoms of the following molecules:
XHn(X¼Xe, I, Te, Sb and Sn; and n¼ 0–4). In Figure 8 we show their paramagnetic
behaviour. It is nice to see that a new and the same mechanism appears. What one
observes, for rare gas atoms, is a particular value that produces its vanishing value
for c!1. But the physics involved seems to be the same in all cases. In the case of
TeH2 �

p-like;R(NR)(Te)¼�7.78 (�1696.03) ppm and for SbH3 �
p-like;R(NR)(Sb)¼�306.25

(�1722.65) ppm [106]. This means that relativistic effects on the paramagnetic-type
contribution of NMR shieldings is becoming more negative starting from noble gas atoms
to the left on the periodic table, as shown in Figure 8. The fact that paramagnetic-type
contributions becomes larger for c! 1 can be explained from Equations (116) and (115)
given above. It is also found that the behaviour of �p-like(X) when n= 2 is almost the same.
This would mean that only linear molecules and systems with strict spherical symmetry
would have different numerical contributions.

Another interesting finding that is shown in Figure 7 is related to the growing value
of �d when c goes from 1 to infinity. This is explained from Equation (113) where we can
see that the positronic contribution to � is approximated by Equation (115). Then, the last
two terms are different from zero when c¼ 1 but become zero when c goes to infinity.

4.6. Comparison with other methods

In this section we will include some brief comments on different methods that were
developed to consider relativistic effects on magnetic molecular properties. There are a few
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Figure 8. [Colour online] Paramagnetic behaviour of � (X; X=Xe, I, Te, Sb and Sn) depending on
the value of the velocity of light at the RPA level of approach.
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recent review articles that focus on both methodologies and new results which the

interested reader should have a look at [107–111].
MO-based full relativistic formulations for chemical shifts were first published in 1983

[112–115]. Previously Pyykkö proposed a relativistic theory for NMR J-couplings in 1977

[116]. Calculation of J-couplings for molecules containing heavy atoms were performed

with a semi-empirical relativistic code named REX early in the 1980s [68], and later with

CLOPPA-MNDO [117].
There are several two-component methods based on transformed Dirac–Coulomb

Hamiltonians: (a) the zero-order regular approximation, ZORA; (b) the Douglas–Kroll–

Hess method, DKH; (c) the infinite-order regular approximation with modified metric,

IORAmm; (d) the infinite-order two-component theory, IOTC; and (e) the field-dependent

unitary transformation to the Dirac operator.

(a) The ZORA approach [118] is the most widely used. It may underestimate [119]

relativistic effects on shielding of heavy atoms as compared with four-component

relativistic theory. ZORA only takes zeroth-order effects into account [120]. Fukui

and coauthors extended the normalized ESC theory to include magnetic

interactions. They applied it to calculate �(H) and �(X) in HX (X¼F, Cl, Br

and I) systems at the levels of ZORA or NESC-ZORA and second-order regular

approximation or NESC-SORA [121].
(b) The DKH approach arises from a transformation proposed to uncouple the large

to the small components, to some order n (n¼ 1, 2) in c�2. This method does not

suffer from gauge invariant problems. When including more accuracy the

formalism becomes more and more complicated [122]. Recently Nakatsuji and

coauthors improved previous methods along the lines of DKH theory by including

the relativistic magnetic interaction operator into the generalized UHF scheme

[123,124].
(c) Its Hamiltonians involve all relativistic terms of order c�2 correctly [126]. It was

applied to calculate 1J(Pb–H) in PbH4 and PbHMe3 molecules with BLYP and

B3LYP functionals [127].
(d) Fukui and coauthors have extended the IOTC theory to include calculations of

shielding tensors [128–130].
(e) The transformation can be obtained at the operator level, at the matrix level or as

a mix of both methodologies [131–133]. Liu and coauthors prefer the external

field-dependent unitary transformation at the operator level, EFUT, due to its

explicit operator form. They have shown results of shielding for Rn and Rn85þ.

Relativistic effects have also been included as a perturbation to NR quantum

mechanical calculations: (i) from response theory and applying the elimination of the small

component, ESC, transformation: LR-ESC [134,135], and (ii) from the Breit–Pauli

Hamiltonian [136–138]. Both schemes are completely equivalent in their numerical results

though they involve different operators. Both give closest results compared with the

four-component polarization propagator approach, and in some cases with experimental

results [139,140]. Their shortcomings lie in the fact that they can quantitatively reproduce

only the leading relativistic effects until elements of the fifth-row [99], though their

advantages are on interpretations which in most cases are related with a mix of NR

mechanisms [141]. The elimination of the small component reduction is applied directly to
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a four-component Rayleigh–Schrödinger perturbation theory expression of the magnetic
properties. In this sense, it is wholly consistent with the most direct relativistic theory
of magnetic properties. An alternative approach for the calculation of the negative-energy
state contributions to magnetic properties within the LR-ESC approach has been
presented with numerical results for Xe and I atoms [142].

Similar previous attempts were made by methods which include FC or SD plus
one-electron SO corrections using finite-perturbation UHF [143–145] and DFT [146,147]
methods.

Relativistic configuration interaction (CI) and coupled cluster (CC) methods using
four-component spinors were developed by Nakatsuji and coauthors [148]. They start with
the no-pair Dirac–Coulomb–Breit (DCB) Hamiltonian and include in it the magnetic
vector potential. Molecular DF spinors are obtained considering the nuclear magnetic
moment term explicitly. This is an important point because calculations are done in the
post-SCF level of single and double CI (SDCI) and the relativistic CCSD method,
where the Hellmann–Feymann theorem is not satisfied. The zero-order wavefunction in
the electron-correlation calculations is approximated by a single Slater determinant of the
positive-energy molecular DF spinors. Its application to the HX series shows excellent
agreement with experimental values, though for larger systems results are not as good due
to basis set requirements.

A four-component DFT theory for calculating nuclear magnetic shieldings [97] and
J-couplings [149] was developed by Malkin and coworkers. This scheme is based on the
restricted magnetic balance basis (RMB) and implemented at the level of Dirac–Khon–
Sham. The method was dubbed mDKS-RMB. In this method the unperturbed equations
are solved with the use of an RKB basis set for the small components, and the
coupled-perturbed DKS equations were solved with the RMB prescription for the
construction of the small component basis set. It does not have any problems of picture
change effects, which may arise when transformation from four-component operators to
two-component operators is applied. Calculations of �(H) and �(X) for XH (X¼F, Cl,
Br, I) systems with the coupled-perturbed mDKS-RMB scheme gives close results
compared with experiments, though such experimental results are based on Flygare’s
approach. Benchmark calculations of 1J(XH) and 2J(H–H) for compounds XH4 (X¼C,
Si, Ge, Sn and Pb) show that the BP86 correlation functional gives better results compared
with experiments.

5. QED

The description of electrons in terms of the relativistic Dirac equation was a remarkable
step forward in the search of a rigorous theoretical foundation for the physics of atoms
and molecules. Nevertheless, the electromagnetic field remained as a ‘scenery’ for the
electron motions. In the formal framework it was considered as an external source acting
on the matter (particles) but without its own degrees of freedom and hence lacking
a dynamics. There were at least two important conceptual problems with Dirac’s theory.
On the one hand, from the very beginning of quantum theory it was known that the
electromagnetic field behaves, under some circumstances, as particles with quantized
energies and momentum; this fact is not present in Dirac’s equation. On the other
hand, the infinitely many negative-energy solutions of Dirac’s equation did not have
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consequences on the experiments, so they were thought to represent unavailable states.

Dirac solved this problem by proposing that those states are occupied. Such a proposal

required an infinite number of unobservable electrons forming a negative-energy

many-particle ‘sea’. Firstly, we shall address the introduction of a dynamics for the

electromagnetic field, and later on we will discuss the effects introduced by the

negative-energy sea or, equivalently, the treatment of positrons as virtual antiparticles.
Even though our applications are mainly oriented to bound-state systems, we can

derive the relevant techniques for weakly interacting particles, where the formal

calculations are easier, and afterwards extend the results by means of the Gell-Mann

and Low theorem to bound-state systems. Then, the level-shift formula can be applied to

the interaction with an external classical field, which is the case of the NMR parameters.
In order to treat the degrees of freedom of both matter and radiation on an equal

footing, the electromagnetic field must be decomposed into its normal modes, within a box

of volume V,

A�ðxÞ ¼ A�þðxÞ þ A��ðxÞ, ð121Þ

where

A�þðxÞ ¼
X
k�

�h

2
0ckV

� �1=2

e�k�ck�e
�ik � x

ð122Þ

A��ðxÞ ¼
X
k�

�h

2
0ckV

� �1=2

e�k�c
�
k�e

ik � x, ð123Þ

and the coefficients have to be promoted to Fock operators satisfying proper commutation

relations, i.e.

ck�, ck0�0½ � ¼ cyk�, c
y

k0�0

h i
¼ 0, ð124Þ

ck�, c
y

k0�0

h i
¼ �����0�kk0 �0 ¼ �1, �i ¼ 1ði ¼ 1, 2, 3Þ: ð125Þ

This is the basis of the canonical quantization method. The fields at each point of space are

considered as the dynamical variables and the position coordinates as a continuous

subscript labelling a given component of a field r(x), (r¼ 1, 2, . . . ,N ). The electric

and magnetic fields E and B are then derived from the 4-potential A�¼ (,A). Therefore,
the following covariant commutation relations are obtained

A�ðxÞ,A�ðx0Þ½ � ¼ i�hcD��
F ðx� x0Þ, ð126Þ

where D��
F ðx� x0Þ is the Feynman photon propagator defined by

i�hcD��
F ðx� x0Þ ¼ hvacjTfA�ðxÞA�ðx0Þgjvaci ð127Þ

and explicitly given by

D��
F ðxÞ ¼ �g

��

Z
d 4k

ð2�Þ4
e�ikx

k2 þ i

: ð128Þ
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We are interested in atoms and molecules under external magnetic fields. The choice of the

Coulomb gauge allows us to separate the longitudinal and transverse fields in such a way

that the scalar potential resembles the instantaneous Coulomb interaction, while the

vector potential satisfies a wave equation. On the other hand, as an approximation a part

of the vector potential can be considered as classical, while the rest has a quantum nature.

This description is more intuitive on a physical basis because the scalar potential becomes

included as the electrostatic potential of nuclei in the Dirac equation. Nevertheless, from

a formal point of view it is less satisfactory because the covariance of the theory becomes

broken. As discussed later on, another effect of the breaking of the symmetry is that

the electron propagation forward and backward in time has to be considered separately,

thus giving a different interpretation for either processes.
Now we change our picture for the electrons. Proceeding as before, the field  can be

expanded in terms of a complete set of solutions to the Dirac equation (within a box

of volume V)  n. Since the time dependence of the negative-energy solutions is equivalent

to the time dependence of positive-energy particles, we change from negative-energy

electron states arp to positive-energy positron states byrp

 ðxÞ ¼  þðxÞ þ  �ðxÞ

¼
X
rp

mc2

VEp

� �1=2

arpurpe
�ipx=�h þ byrpvrpe

ipx=�h
h i

, ð129Þ

and the corresponding expression for � ðxÞ. Henceforth, the anticommutation relations

for the Fock operators a and by are

arp, a
y

sp 0

n o
¼ brp, b

y

sp 0

n o
¼ �rs�pp 0 , ð130Þ

and zero otherwise.
From them, a covariant anticommutation relation

 ðxÞ, � ð yÞ
� 	

¼ iSðx� yÞ ¼ i i��@� þ
mc

�h

� �
Dðx� yÞ ð131Þ

can be derived, where the Feynman fermion propagator SF(x� y) is defined by

hvacjTf ðxÞ � ð yÞgjvaci ¼ iSFðx� yÞ, ð132Þ

having the representation

SFðxÞ ¼
�h

ð2��hÞ4

Z
d 4p

��p� þmc

p2 �m2c2 þ i0
e�ipx=�h: ð133Þ

Finally, in order to allow the electrons to interact with an external field, we invoke the

minimal coupling prescription consisting in the replacement @�! D� ¼ @� þ
iQ
�hc A�ðxÞ.

Then, the Dirac equation for electrons (Q¼�e) becomes

ði�h��@� �mcÞ ðxÞ ¼ �
e

c
��A�ðxÞ ðxÞ, ð134Þ

which is equivalent to introducing a mutual interaction Hamiltonian density

HI ¼ �e � ðxÞ�� ðxÞA�ðxÞ ¼ ð1=cÞ j
�ðxÞA�ðxÞ ð135Þ
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between the conserved 4-current j�ðxÞ ¼ �ec � ðxÞ�� ðxÞ and the electromagnetic field.
It should be noted that we focus on the effect of the quantization of the electromagnetic field
on the interaction between the electrons of amolecule with the spins of the nuclei. TheNMR
spectroscopic parameters J and � are defined from their phenomenological energy
expressions which are bilinear in the nuclear spins, and the external magnetic field and the
spin of the nucleus considered, respectively. Two alternative formalisms can be used for
defining them when a quantized electromagnetic field is present. One of them makes use
of the Gell-Mann and Low energy expression for a given interaction Hamiltonian; the other
one considers that the magnetic dipole moments associated with the nuclear spins interact
with the magnetic field resulting from the quantized vector potential.

In the next subsection we shall be concerned with the interpretation of virtual
excitations from occupied electronic states to negative-energy electronic states for the
contributions to magnetic property calculations. This drives us to consider different
pictures for getting matrix elements looking for their equivalence. The two formalisms
named S-matrix and multi-polar (in particular, dipolar) QED, will then be presented in
Sections 5.2 and 5.4 were we show two successful attempts to obtain NMR spectroscopic
parameters from the QED theory. The appearance and treatment of ‘virtual’ antiparticles
will be considered after Section 5.2.

5.1. Empty Dirac vs. QED picture

We need to introduce here two equivalent pictures for the second quantized form of any
relativistic operator Ô [94]: (a) the ‘empty Dirac’ approach where the negative-energy
states are empty, and are not reinterpreted as positron states, and (b) the QED approach.
In the first approach

Ô ¼
X
pq

Ôpqa
y
paq þ Ôp ~qa

y
pa ~q þ Ô ~pqa

y

~paq þ Ô ~p ~qa
y

~pa ~q ð136Þ

where the tilde on Roman indices means orbitals which belongs to the negative-energy
branch of Dirac’s energy spectra. The unoccupied spinors consist of the unoccupied
electron spinors and the negative-energy spinors. On the other hand, in the QED picture
the negative-energy states are reinterpreted according to the QED approach as
positive-energy positrons, and the operators are presented in normal-ordered form

: Ô :¼
X
pq

Ôpqa
y
paq þ Ôp ~qa

y
p ~ayq þ Ô ~pq ~apaq � Ô ~p ~q ~ayq ~ap: ð137Þ

The unoccupied spinors consist of the unoccupied electron spinors and the negative-energy
spinors, just as in the empty Dirac approach.

When calculating the property matrix elements of Equation (14) with operators
expanded in both pictures one gets the same c-numbers.

Within the empty Dirac picture

h0j
h
P̂, âyaâi

i
j0i ¼

X
pq

Ppa

�
�qah0jâ

y

pâij0i � �pih0jâ
y

aâqj0i
	

ð138Þ

�
X
p ~q

Pp ~q�pih0jâ
y

aâ ~qj0i þ
X

~pq

�qah0jâ
y

~pâij0i ð139Þ

¼ Pia: ð140Þ
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The contributions of the last three terms are zero because in the reference state there are

no unoccupied spinors, so only the first one survives. A similar expression is found for the

excitation âã ai though the property matrix element will be Piã

Working within the QED picture one gets the same results for both property matrix

elements. Then one can say that all matrix elements of polarization propagators will be the

same in both pictures.

5.2. S-matrix formalism for bound state QED

For convenience, we change now to the interaction picture

OIðtÞ ¼ eiH0t=�hOSe
�iH0t=�h: ð141Þ

where both the state vectors and the operators evolve with time:

i�h
dOIðtÞ

dt
¼ OIðtÞ,H0½ �, ð142Þ

i�h
d

dt
j�IðtÞi ¼ HIðtÞj�IðtÞi ð143Þ

with the time-dependent Hamiltonian HI(t).
Consider an initial state ji i of a system of non-interacting particles having well-defined

properties (such as particle number, energy, momentum, etc.). Let them collide, interacting

during a short time, and fly apart from each other again. The evolution of the state of

the system j�(t)i is given by Equation (143) under the initial condition j�(�1)i¼ ji i.

The state long after the scattering will be j�(1)i also having well-defined properties.
The S-matrix is defined as the operator performing the evolution of the system between

both non-interacting states

j�ð1Þi ¼ S j�ð�1Þi ¼ Sji i: ð144Þ

Together with the initial condition j�(�1)i¼ ji i, this gives

S ¼
X1
n¼0

1

n!
�

i

�h

� �nZ 1
�1

d4x1

Z 1
�1

d4x2 . . .

Z 1
�1

d4xnTfHIðx1ÞHIðx2Þ . . .HIðxnÞg ð145Þ

as a formal solution in terms of the time ordering operator.
Wick’s theorem [150] allows us to express a T-product of any set of Fock operators

A,B,C, . . . ,X,Y,Z in terms of their normal ordered product and one, two, etc.

contractions:

TfABC � � �XYZg ¼ : ABC � � �XYZ : þ : AB|{z}C � � �XYZ : þ : ABC|ffl{zffl} . . .XYZ : þ � � �

þ : ABC . . .XYZ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} : þ � � � ð146Þ

i.e. a product of Fock operators with the creation operators placed to the left of the

annihilation operators times photon and fermion propagators (represented by the
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underbrackets) defined as

SFðx, yÞ ¼ hTf ðxÞ � ð yÞgi, ð147Þ

DF��ðx, yÞ ¼ hTfA�ðxÞA�ð yÞgi, ð148Þ

while for equal-time operators,

TfAðtÞBðtÞg ¼
1

2
AðtÞBðtÞ �

1

2
BðtÞAðtÞ: ð149Þ

The time dependence of the propagators can be made explicit if we write them as follows

SFðx, yÞ ¼

Z
dE

2�i
SFðx, y;E Þe�iEðx

0�y0Þ, ð150Þ

DF��ðx, yÞ ¼ g��

Z
dk0
2�i

DFðx, y; k0Þe
�ik0ðx

0�y0Þ: ð151Þ

The fermion propagator SF(x, y; E ) has the following spectral representation [151]

SFðx, y;E Þ ¼
X
n

nðxÞ �nðyÞ

E� "nð1� i�Þ
, ð152Þ

where � is an infinitesimal positive quantity and n runs over the complete spectrum of

eigenfunctions.
The Dirac equation takes into account the electron–nucleus and electron–electron

interaction by means of electrostatic fields; that description turns out to be enough to

provide, to a large extent, agreement with experimental data. However, as already pointed

out, some small discrepancies are measurable. The smallness of the corrections required

to fit the theoretical predictions to the experimental measurements indicates that the

quantum effects of the electromagnetic field can be treated as perturbations to the

solutions of the Dirac equation with classical fields. This is the basis of the bound state

QED. Within this formalism the total electromagnetic field is separated into two parts:

a classical field a�(x) describing the gross electronic spectrum, and a perturbation A�(x)

describing small corrections to it (such as processes of creation and annihilation of virtual

particles).
Quantum electrodynamics of bound state systems is best formulated in the so-called

Furry bound interaction picture [152]. In this picture, one starts from the solutions i(x) to
the Dirac equation in the potential a�(x) (such as the nuclear potential, for instance)

described by the Hamiltonian H0

H0ðxÞ ¼ i�h��@� þ
e

c
��a� �mc

� �
ðxÞ ¼ 0, ð153Þ

while the interaction between the quantized electromagnetic and Dirac fields is given by

HI ¼ �
e

c
��A�ðxÞ: ð154Þ
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Expansion of the Dirac field in terms of a complete set of zeroth-order solutions

n(x)¼n(x)e
�iEnt/�h of the Dirac equation in the potential a�(x), and promotion of the

coefficients of the expansion to creation and annihilation operators, allows us to hold the

particle interpretation. Hence, the operator an (bym) annihilates (creates) electrons

(positrons) in the bound state n (m) with En4 0 (Em5 0).
Then the electron–positron field reads

 ðxÞ ¼
X
En40

annðxÞ þ
X
Em50

bymmðxÞ, ð155Þ

and the Fock operators satisfy the usual anticommutator relations

fan, a
y
mg ¼ fbn, b

y
mg ¼ �nm, ð156Þ

and zero in every other case. The main interest in the bound state problem is the

calculation of level shifts. In the approach by Gell-Mann and Low [153] and Sucher [154]

the interaction Hamiltonian HI(t) is replaced by an adiabatically damped one

H 

I ðxÞ ¼

Z
d3xe�
jx

0jj�ðxÞA�ðxÞ: ð157Þ

so that the energy shift of an unperturbed state j0i is given by the level shift formula

DE0 ¼ lim

!0, �!1

i
�

2

@
@� h0jS
,�j0ic
h0jS
,�j0ic

þ const: ð158Þ

where S", � is the S-matrix defined as

S
,� ¼ 1þ
X1
k¼1

ð�i�Þk

k!

Z
d4x1 � � �

Z
d4xkTfH



I ðx1Þ . . .H 


I ðxkÞg: ð159Þ

where TfH

Iðx1Þ . . .H


IðxkÞg is the time-ordered product (i.e. x01 5 x02 5 � � �5 x0k) of the

operators H

Iðx1Þ � � �H



IðxkÞ.

Expanding DE0 in powers of �, the energy formula can be written from first to

fourth-order in the S-matrix as

DE ð1Þ0 ¼
i


2
hS ð1Þi, ð160Þ

DE ð2Þ0 ¼
i


2
2hS ð2Þi � hS ð1Þi2
� �

, ð161Þ

DE ð3Þ0 ¼
i


2
3hS ð3Þi � 3hS ð1ÞihS ð2Þi þ hS ð1Þi3
� �

, ð162Þ

DE ð4Þ0 ¼
i


2
4hS ð4Þi � 4hS ð1ÞihS ð3Þi � 2hS ð2Þi2 þ 4hS ð1Þi2hS ð2Þi � hS ð1Þi4
� �

: ð163Þ

It has been shown [151] that, for classical external potentials V and one-electron atoms

in the state a, the first- and second-order level shift formula reduces to the well-known

expressions from standard perturbation theory

DE ð1Þa ¼ Vaa ð164Þ

DE ð2Þa ¼
X
En 6¼Ea

Van
1

Ea � En
Vna: ð165Þ
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It would be instructive to analyse the second-order level shift from yet another point of
view. Since for NMR applications we are interested in the effect of two external magnetic
fields (from the nuclear spins or the aligning field from the spectrometer), the relevant
term is

S
ð2Þ
"� ¼

ð�i�Þ2

2!

Z
d4x1d

4x2T HIðx1ÞHIðx2Þ
� 	

: ð166Þ

Applying Wick’s theorem, the time ordered product is decomposed in terms having zero,
one and two contractions between the fermion operators. In order to give non-vanishing
contributions they require two, one and none electrons, respectively, in both the initial and
final states. The last possibility is ruled out as a purely vacuum process. The two-electron
state refers to a process in which each electron interacts with one external field but not
between them. Finally, the situation with one-electron states corresponds to a single
electron interacting twice with the external fields. We shall focus on this process, which is
equivalent to the PZOA level of approach. Note that in every case there is no contraction
between photon operators, and hence no photon propagator, since the electromagnetic
field is a classical one.

Writing the electron propagator in terms of the wavefunctions  (x) and � ðxÞ, and
using its representation in the frequency (or energy) domain, Equations (150) and (152),
the second-order correction to the energy is given by

DE ð2Þ0 ¼ 0

 ��S ð2Þ"� 0

�� �
	

Z
d3x ��0ðxÞS

ð2Þ
"� �0ðxÞ 	

Z
d3x ��0ðxÞiSðx1 � x2Þ�0ðxÞ: ð167Þ

Then,

DE ð2Þ0 ¼

Z Z
dx1dx2 � 0ðx2Þe

�" t2j j��A�ðx2ÞSðx1, x2,EÞ��A�ðx1Þ 0ðx1Þe
�" t1j j þ c:c: ð168Þ

In this equation � 0ðx2Þ and  0(x1) represent occupied estates  i(x). On the other hand,
the photon fields can be expressed in terms of the vector potentials of the magnetic fields,
that is, A� ffi e�i!tA(x). Hence, the second-order expression for the energy becomes

DE ð2Þ0 	

Z
d3x1

Z
d3x2

Z 1
�1

dt1

Z 1
�1

dt2

Z
d!eiðE0þ!Þt2�" t2j je�iðE0þ!Þt1�" t1j j ð169Þ

� � 0ðx2Þ� � A
N
ðx2Þ

X
s

 sðx2Þ � sðx1Þ

Esð1� i�Þ þ !
� � AB

ðx1Þ 0ðx1Þ: ð170Þ

Integrating over t1, t2, and !, and taking the limit for "! 0 we get

DE ð2Þ0 	

Z
d3x1d

3x2 � 0ðx2Þ� � A
N
ðx2Þ

X
s 6¼0

 sðx2Þ � sðx1Þ

Es � E0
� � AB

ðx1Þ 0ðx1Þ ð171Þ

¼
X
s6¼0

� � 0h jAN sj i sh jAB 0j i � �

Es � E0
þ c:c: ð172Þ

It should be noted that the last expression is the same as the one obtained from the
definition of the polarization propagator. Furthermore, its representation involves a
summation on intermediate positive- and negative-energy states. In Figure 9 the time is
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assumed running from top downward. The straight vertical line between x1 and x2 in

Figure 9(a) stands for both signs of energy, and it is equivalent to the sum of the (b) and (c)
diagrams where the solid broken lines stand for an electron propagating forward in time

(i.e. with positive energy) and an electron propagating backward in time (i.e. with negative
energy), respectively. Taking into account the way in which the wavefunctions for

electrons of negative energy evolve with time, the last graph can also be represented

with an opposite direction of the arrow, as in Figure 10. In (a) the electron is scattered
backward in time at x1 due to its interaction with the field AN, and then scattered

forward again at x2 due to AB. This is equivalent to saying that an electron–positron is

created at x2 due to AB with the positron being annihilated by the electron at x1 in the
field of AN.

Another process of interest occurs when the electron interacts only with a quantized

field; i.e. when there is no classical vector potential and neither the initial nor final state
have photons, the second-order S-matrix can be represented by a self-energy Feynman

diagram as sketched in Figure 11. Feynman diagrams represent pictorial representations

of processes included in the calculations of the S-matrix. A wavy line represents
the photon propagator and a straight line stands for the bound fermion propagator.

Figure 9. Decomposition of the fermion propagator (a) in terms of Feynman diagrams with forward
(b) and backward (c) paths. The solid line represent an electron interacting with external magnetic
fields AN and AB represented by the wavy lines.

Figure 10. Equivalence between the Feynman diagrams of an electron propagating backward in
time and a positron propagating forward in time.

Figure 11. [Colour online] Basic self-energy Feynman diagram.
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In this view, the process of Figure 11 is interpreted as if the electron interacts with a
photon by emitting it and reabsorbing it later and contributes with a measurable shift
in the energy levels of the bound electron, namely, the self-energy correction.

As an application of the third-order formula (162), Blundell et al. [155] calculated
self-energy corrections in atomic systems in the presence of an external potential.

The fourth-order energy expression (163) was used to obtain self-energy corrections to the
NMR parameters. The Feynman diagrams depicted in Figures 12 and 13 appear in the
computation of DE ð4Þ0 .

For the n levels of heavy atoms (Z4 50), QED effects are known to cancel 	 1% of the
relativistic shifts of the one-electron energies. As an estimation of the order of magnitude
expected for the QED effects on magnetic properties, Pyykkö and Zhao have used local
model potentials to simulate self-energy effects on atomic energy levels and magnetic
dipole hyperfine integrals. It was found that the self-energy effect on the ground state
hyperfine splitting of Hgþ is around 1.4%, thus giving DJ/J	�3% for the Hg–Hg
coupling [156].

Figure 13. Fourth-order Feynman diagrams vertex–vertex (VV), left–vertex (LV), vertex-right (VR),
left–right (LR), left–left (LL) and right–right (RR) contributing to the self-energy correction
quadratic in the external field and corresponding to the S

ð4Þ

� term.

Figure 12. Feynman diagrams side left (L), side right (R) and vertex (V) for self-energy
corresponding to the S

ð3Þ

� term.
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5.3. Antiparticles

Are antiparticles needed in chemistry? As Dirac stated in the early days of QED, almost
the whole of chemistry is included in the physics described by QED or the quantum
physics of electrons and electromagnetic fields. If we describe the electron’s dynamics
within the framework of relativistic quantum mechanics one cannot avoid making a
reference to positrons. As mentioned above, the Dirac equation is not a one-body equation
but a many-body one. The hole theory predicts the existence of positrons that were
observed in 1932, and given that electrons and positrons may annihilate we must abandon
the interpretation of the Dirac equation as a wave equation and construct a truly
many-body theory which includes particles and antiparticles in a consistent way. This is
achieved by the second quantization which polarization propagators use from the very
beginning even within the NR domain. Then from the outset or at the end, positrons
do and will appear. They could appear as virtual particle–antiparticle pairs created or
annihilated, just as virtual orbitals are needed to reproduce bonds properly. Virtual
particles (and antiparticles) are such particles that appear in intermediate, unobservable,
stages of a process. Only initial and final particles in the diagram represent observable
objects and are the well-known real particles.

One can make some transformations to move some of its effects from, say, diamagnetic
to paramagnetic contributions in actual calculations, but one should not forget that their
influence on property values cannot be eliminated. This fact seems to be similar to what
one is used to consider within the NR domain: one always has both terms, diamagnetic
and paramagnetic, and one cannot eliminate one of them by modifying the gauge
condition. Within the relativistic domain diamagnetism and paramagnetism arise from
the same formal source. Indeed they arise from excitation to ‘virtual’ positive or negative-
energy electronic states.

Antiparticles can be used to explain deeper insights into magnetic properties that
otherwise would not be observed. How do they appear and what kind of effects may one
expect from them? To answer this question we need to go further with the QED formalism
applied to calculate magnetic molecular properties.

Equation (171) shows that polarization propagators can be derived from the
second-order correction of the S-matrix. The interpretation of the origin of diamagnetic
contributions arises from the non-covariant formulation of QED. Diamagnetic terms
are obtained as interactions with ‘external’ fields that may be considered as classical, which
produce virtual pair creation and annihilation. It is easy to start with hydrogen-like atoms.
In such a case one needs to work only at the PZOA level of approach. The diagrams of
Figure 9 show that there are two interactions. Paramagnetic terms arise from excitation
to positive-energy unoccupied orbitals or only one-electron excitations. On the other hand,
diamagnetic terms arise from excitations which involve two electron–positron pairs; one is
created due to the electron interaction with one of the external fields and then annihilated
by the interactions with the other external field. The diagram shows the equivalence
between the negative-energy electron moving backward in time and the positive-energy
positron moving forward in time.

We may ask whether this new formulation brings about new insights, or is it only
a kind redefinition of what is well-known?

There is an old approximation that was first formulated by Sternheim in 1962 [157].
One can approximate each excitation to the negative-energy branch by the same

International Reviews in Physical Chemistry 49

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



number: 2mc2. This approximation works quite well for not so heavy atoms. Why is this
so? We used this approach 10 years ago [29] and a similar prescription for the development
of the LR-ESC formalism [134,135]. We have shown that when working with heavier
atoms the development as a series of the inverse of excitation to the negative-energy
branch does not fit exactly to the exact inverse. In fact a branch of excitations appears that
seems to restrict the whole branch to a well-defined interval of energies. What about the
amount of its total contribution? They accounted for more than 95% of the diamagnetic
terms [158].

We have shown that diamagnetic terms arise from ‘virtual pair-creations’ that are
then annihilated. In fact there are two pairs involved because in the principal propagators
one works at least with two simultaneous excitations (at the SOPPA level there are
more than two simultaneous excitations). So, if the energy involved were larger than
4mc2 there would be a non-zero probability for a real creation of electron–positron pairs.
But, as it should be, this is not the case. As we have shown a few years ago, there are
no contributions which have excitation (to the negative-energy branch of the energy
spectra) energies equal to or larger than 4mc2.

5.4. Multi-polar QED

We shall outline now the basics of another formalism developed for the foundation of the
QED theory of the nuclear spin–spin coupling tensor. It is closely inspired by the
description of one-photon absorption by molecules in multi-polar QED [159]. The total
Hamiltonian for bounded electrons in a molecule interacting with quantized electromag-
netic fields can be written as

H ¼ HDF þHR þHI, ð173Þ

where HDF is the electronic Hamiltonian at the Dirac–Fock (DF) level of approximation,
HR is the free radiation Hamiltonian, and HI ¼ HA

I þHN
I þHM

I accounts for the
interaction of the radiation with the electrons, and the nuclei N and M, respectively. Using
the Coulomb gauge, we can write

HR ¼
X
k

�h!aykak ð174Þ

HDF ¼
X
i


ib
y
i bi ð175Þ

HA
I ¼ ec

Z
�yðxÞ� � AðxÞ�ðxÞd3x, ð176Þ

HK
I ¼ �lK � BðRKÞ, ðK ¼M,NÞ, ð177Þ

where !¼ ck is the photon frequency in the mode (k, �), "i is the orbital energy of the
DF state i and byi and bi are the corresponding creation and annihilation operators.
�¼

P
ibii stands for the fermion field operator and A is the second quantized transverse

three-dimensional vector potential

AðrÞ ¼
X
k�

�h

2"0ckV

� �1=2

eð�Þ ak�e
ik�r þ ayk�e

�ik�r
� �

, ð178Þ
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where e(�)(k) is the unit polarization vector transverse to the wavevector k and V is a
normalization volume. Hereafter, the mode dependence of the photon creation and
annihilation operators will be implicit. With this choice of gauge, all charge interactions
within the molecule defining HDF are instantaneous.

5.4.1. Operator equation of motion

It is convenient to transform to the interaction picture, where the Hamiltonian can be
written as H ¼ H0 þHA

I . In this representation, the operators evolve with time according
to Heisenberg-like equations of motions depending on the interaction Hamiltonian HA

I .
Photon and fermion Fock operators become a(t)¼ �(t)e�i!t, bn(t)¼	ne

�i
nt and their
hermitian conjugate relations for ay and byn.

The electron–radiation interaction Hamiltonian now becomes

HA
I ¼ ec

X
ij

X
k�

�h

2"0ckV

� �1=2

e � �e�i!tuðþÞij þ �yei!tuð�Þij
� �

	yi 	je
i!ijt ð179Þ

where the vectors u(�)ij have components uð�Þijr 
 hij�re
�ik�rjji, and �r is the r-th Dirac

matrix (r¼ 1, 2, 3). The operator equations of motion

i�h _� ¼ �,HA
I

� �
¼ ec

X
ij

�h

2"0!V

� �1=2

e � uð�Þijeið!þ!ijÞt	yi ðtÞ	j ðtÞ ð180Þ

i�h _	j ¼ 	j,H
A
I

� �
¼ ec

X
n

X
k�

�h

2"0!V

� �1=2

	ne � �u
ðþÞ jne�ið!�!jnÞt þ �yuð�Þ jneið!þ!jnÞt

� �
ð181Þ

can be integrated to give

�ðtÞ ¼ �ð0Þ � iec
X
ij

1

2"0�h!V

� �1=2

eru
ð�Þij
r

Z t

0

eið!þ!ijÞt
0

	yi ðt
0Þ	j ðt

0Þdt0 ð182Þ

	j ðtÞ ¼ 	j ð0Þ � iec
X
n

X
k�

1

2"0�h!V

� �1=2

er

�

Z t

0

dt0	nðt
0Þ �ðt 0ÞuðþÞ jnr e�ið!�!jnÞt

0

þ �yðt 0Þuð�Þ jnr eið!þ!jnÞt
0� �
: ð183Þ

These coupled equations can be solved by successive iterations to get a solution in terms
of powers of the electron charge. Substituting the unperturbed operators �(0) and 	j(0)
into the right-hand side of Equations (182) and (183) we get the first-order corrections

�ð1ÞðtÞ ¼ �ec
X
ij

1

2"0�h!V

� �1=2

eru
ð�Þij
r

eið!þ!ijÞt � 1

!þ !ij
	yi ð0Þ	j ð0Þ ð184Þ
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	ð1Þj ðtÞ ¼ ec
X
l

X
k�

�h

2"0�h!V

� �1=2

	l ð0Þ

� �ð0Þeru
ðþÞ jl
r

e�ið!�!jlÞt � 1

!� !jl
� �yð0Þeru

ð�Þ jl
r

eið!þ!jlÞt � 1

!þ !jl

� �
: ð185Þ

On the other hand, the O(e2) correction �(2) to the photon operator follows from

approximating, in the right-hand side of Equation (182), 	yi ðtÞ	j ðtÞ by its first-order

approximation 	yð1Þi 	j ð0Þ þ 	
y

i ð0Þ	
ð1Þ
j , with 	yð1Þi and 	ð1Þj given by Equation (185) and its

hermitian conjugate. Then,

�ð2ÞðtÞ ¼
X
ijl

X
k0�0

e2c

2
0�hV

� �
1

kk0

� �1=2

	yi ð0Þ	l ð0Þ

�0ð0Þ
ðeru

ð�Þij
r Þðe

0
su
0ðþÞ jl
s Þ

!0 � !jl

e�ið!
0�!�!ilÞt � 1

!0 � !� !il
þ
eið!þ!ijÞt � 1

!þ !ij

� �"(

�
ðe0su

0ðþÞij
s Þðeru

ð�Þ jl
r Þ

!0 � !ij

e�ið!
0�!�!ilÞt � 1

!0 � !� !il
þ
eið!þ!jlÞt � 1

!þ !jl

� �#

þ �0
y
ð0Þ
ðeru

ð�Þij
r Þðe

0
su
0ð�Þ jl
s Þ

!0 þ !jl

eið!
0þ!þ!ilÞt � 1

!0 þ !þ !il
�
eið!þ!ijÞt � 1

!þ !ij

� �"

�
ðe0su

0ð�Þij
s Þðeru

ð�Þ jl
r Þ

!0 þ !ij

eið!
0þ!þ!ilÞt � 1

!0 þ !þ !il
�
eið!þ!jlÞt � 1

!þ !jl

� �#)
:

ð186Þ

It is interesting to analyse the structure of the corrections to the operators � and 	 in the

combined photon–electron Fock space. They affect the form of the magnetic vector

potential (178). The zeroth-order operators �(0) correspond to those of a free field. The

first-order corrections, �(1) � 	y(0)	(0), are electron excitations. Finally, the second-order

operators �(1) � �(o)	y(0)	(0)þ c.c., both excite electrons and create or annihilate photons.

These operators will give us the explicit form of the magnetic field and show that the

electron–photon interaction affects the degrees of freedom of the electromagnetic field.

5.4.2. Magnetic field in the neighbourhood of a nucleus

From the expressions derived in Section 5.4.1, the contribution of order O(el) to the

magnetic field at the nuclear position RN can be calculated as

Bðl Þp ðRN, tÞ ¼ i
X
k�

�h

2"0!V

� �1=2

"mnpkmen �
ðl Þeiðk�RN�!tÞ � �ðl Þye�iðk�RN�!tÞ

� �
, ð187Þ

the lowest order approximation being the unperturbed field

Bð0Þp ðRN, tÞ ¼ i
X
k�

�h

2"0!V

� �1=2

"mnpkmen �ð0Þe
iðk�RN�!tÞ � �yð0Þe�iðk�RN�!tÞ

� �
: ð188Þ
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Inserting Equation (184) into Equation (187) and summing over the polarization

directions, we get

Bð1Þp ðRN, tÞ ¼ i
X
k

X
ij

e

2
0kV

� �
"mnpkm	

y

i ð0Þ	j ð0Þ

uðþÞijn ðNÞ
ei!ijt � ei!t

!� !ij
� uð�Þijn ðN Þ

ei!ijt � e�i!t

!þ !ij

� �
ð189Þ

where u�ijn ðN Þ 
 hij�ne
�ik�rN j j i, and rN¼ r�RN is the electron position relative to

the nucleus N. As usual, summation over the wavevector k is made by replacing

V�1
P

k! (2�)�3
R
d 3k with d 3k¼ k2dk d�. Integration over the angular variables gives

Bð1Þp ðRN, tÞ ¼
e

8�2i
0c

X
ij

"mnpr
N
m	
y

i ð0Þ	j ð0Þ

� hij
�n
rN

Z 1
0

dkðeikrN � e�ikrNÞ
eickijt � e�ickt

kþ kij
þ
eickijt � eickt

k� kij

� �
j j i ð190Þ

where the derivatives rN
m are taken with respect to the nuclear coordinates RN. Finally,

evaluating the integrals in the complex k-plane, we get

Bð1Þp ðRN, tÞ ¼
�0

4�
ec
X
ij

"mnphijr
N
m

e�ikijðrN�ctÞ

rN

� �
�nj j i	

y

i ð0Þ	j ð0Þ, ð191Þ

if t4 rN/c, and 0 if t5 rN/c, reflecting the causal nature of the fields.
Inserting Equation (186) into Equation (187), and summing again over the polarization

directions, transforming the sum over the wavevector into an integral and integrating the

angular variables, we get the correction to the field up to order e2:

Bð2Þp ðRN, tÞ ¼
X
ijl

X
kk0�0

1

2
0�h!0V

� �1=2
e2

8�2i
0
"mnprm	

y

i ð0Þ	j ð0Þ ð192Þ

� �0ð0Þ
e0ru
0ðþÞij
r

!0 � !ij
h j jI ðþÞðk0 � kil, kjlÞ

�n
rN
jl i

"(
� hijI ðþÞðk0 � kil, kijÞ

�n
rN
j j i

e0ru
0ðþÞ jl
r

!0 þ !jl

#

þ �0
y
ð0Þ

"
hijIð�Þð�k0 � kil, � kijÞ

�n
rN
j j i

e0ru
0ð�Þ jl
r

!0 þ !jl

�
e0ru
0ð�Þij
r

!0 þ !ij
h j jI ð�Þð�k0 � kil, � kjlÞ

�n
rN
j l i

#)
ð193Þ

for times t4 rN/c, where

I ð�Þðq0, q00Þ ¼

Z 1
�1

dk eikrN � e�ikrN
� � e�icq

0t � e�ickt

k� q0
�
e�icq

00t � e�ickt

k� q00

� �
, ð194Þ

while Bð2Þp ðRNÞ ¼ 0 if t5 rN/c.
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5.4.3. Response theory

We shall now evaluate the effect of the presence of nucleusM on the interaction of nucleus

N with the perturbed magnetic field obtained in Section 5.4.2.
The perturbative expansion of the magnetic field obtained in Section 5.4.2 gives rise

to a corresponding expansion of the B-dependent Hamiltonians HM
I and HN

I in powers

of the electron charge

HK
I ¼ H

Kð0Þ
I þH

Kð1Þ
I þH

Kð2Þ
I þ � � � ðK ¼M,N Þ: ð195Þ

These expansions include (up to order O(e2)) the effect of the electron–radiation

interaction. Let us write the state of the electron-field system in the presence of the nucleus

M as �(t). It satisfies the Schrödinger-like equation of motion

i�h
d�

dt
¼ ðH0 þHM

I Þ�ðtÞ: ð196Þ

The expectation value of the Hamiltonian HN
I , at time t, becomes then

h�ðtÞjHN
I ðtÞj�ðtÞi ¼ h�ðtÞjH

Nð0Þ
I ðtÞ þH

Nð1Þ
I ðtÞ þH

Nð2Þ
I ðtÞ þ � � � j�ðtÞi: ð197Þ

In order to determine the influence of the perturbation produced by the nucleus M on this

expectation value, we solve Equation (196) expanding the state � in terms of the complete

set of states of HDF and HR

f�0�0,�k��0,�0�
r
a,�k��

r
a, . . .g ð198Þ

where �0 is the photon vacuum state, �k� ¼ ayk��0 represents one-photon states in the

(k�) mode, etc. On the other hand, �0 is the Dirac–Fock ground state of energy E0, and

�r
a ¼ byr ba�0 are singly-excited (with respect to �0) Slater determinants, �rs

ab ¼ bys bb�
r
a are

doubly excited Slater determinants, etc.
Hence, the state � becomes

�ðtÞ ¼ �0�0 þ
X
k�

ck�ðtÞ�k��0 þ
X
ar

craðtÞ�0�
r
a

þ
X
k�

X
ar

cra;k�ðtÞ�k��
r
a þ

X
k�, k0�0

ck�k0�0 ðtÞ�k��k0�0�0

þ
X
abrs

crsabðtÞ�0�
rs
ab þ � � � ð199Þ

where the coefficients of this expansion satisfy the equations of motion

i�h _ck�ðtÞ ¼ h�k��0jH
M
I j�0�0i þ

X
k0�0

ck0�0 ðtÞh�k��0jH
M
I j�k0�0�0i

þ
X
ar

craðtÞh�k��0jH
M
I j�0�

r
ai þ � � �

¼ h�k��0jH
Mð0Þ
I þH

Mð2Þ
I j�0�0i þ ck�ðtÞh�0jH

Mð1Þ
I j�0i

þ
X
ar

craðtÞh�k��0jH
Mð2Þ
I j�0�

r
ai þ � � � ð200Þ
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i�h _c raðtÞ ¼ h�0�
r
ajH

M
I j�0�0i þ

X
k�

ck�ðtÞh�0�
r
ajH

M
I j�k��0i

þ
X
ar

craðtÞh�0�
r
ajH

M
I j�0�

r
ai þ � � �

¼ h�0�
r
ajH

Mð1Þ
I j�0�0i þ

X
k�

ck�ðtÞh�0�
r
ajH

Mð2Þ
I j�k��0i

þ
X
ar

craðtÞh�0�
r
ajH

Mð1Þ
I j�0�

r
ai þ � � � ð201Þ

i�h _c ra;k�ðtÞ ¼ h�k��
r
ajH

M
I j�0�0i þ

X
k�

ck�ðtÞh�k��
r
ajH

M
I j�k��0i

þ
X
ar

craðtÞh�k��
r
ajH

M
I j�0�

r
ai þ � � �

¼ h�k��
r
ajH

Mð2Þ
I j�0�0i þ

X
k�

ck�ðtÞh�k��
r
ajH

Mð1Þ
I j�k��0i

þ
X
ar

craðtÞh�k��
r
ajH

Mð0Þ
I þH

Mð2Þ
I j�0�

r
ai þ � � � ð202Þ

It should be noted that these coupled equations have to fulfil the initial conditions

ck�(�1)¼ 0, crað�1Þ ¼ 0, cra;k�ð�1Þ ¼ 0, so that �(�1)¼�0�0, and can be solved

iteratively considering an expansion of the coefficients ck�, c
r
a and cra;k� in powers of e.

From the order of the Hamiltonian HM
I it can be seen that ck� is, at least, of order

O(e0), while cra and cra;k� are, at least, of order O(e1). Furthermore, the iterative solution

of Equations (200), (201), and (202) depend linearly, quadratically, cubically, etc. on HM
I .

Restricting ourselves to linear terms, we get the solutions

c
ð0Þ
k�ðtÞ ¼ �

i

�h

Z t

�1

h�k��0jH
Mð0Þ
I ðt 0Þj�0�0idt

0

crð1Þa ðtÞ ¼ �
i

�h

Z t

�1

h�0�
r
ajH

Mð1Þ
I ðt 0Þj�0�0idt

0

c
rð2Þ
a;k�ðtÞ ¼ �

i

�h

Z t

�1

h�k��
r
ajH

Mð2Þ
I ðt 0Þj�0�0idt

0

c
ð2Þ
k�ðtÞ ¼ �

i

�h

Z t

�1

h�k��0jH
Mð2Þ
I ðt 0Þj�0�0idt

0: ð203Þ

Hence,

�hHN
I i ¼ hhH

Nð0Þ
I ðtÞ þH

Nð2Þ
I ðtÞ;H

Mð0Þ
I ðt 0Þ þH

Mð2Þ
I ðt 0Þii þ hhH

Nð1Þ
I ðtÞ;H

Mð1Þ
I ðt 0Þii

þ hhH
Nð2Þ
I ðtÞ;H

Mð2Þ
I ðt 0Þii þ c:c:þ � � � ð204Þ

where c.c. and � � � denote, respectively, complex conjugate and non-bilinear terms in HM
I

and HN
I . Due to the orthogonality of the set of states (198) not every possible

combination of the matrix elements of the perturbations occurs. It should also be noted

that the expectation value of HN
I at time t depends on the matrix elements of HM

I at

every time t 0, with t 0 � t, i.e. it is a time correlation function. Equation (204) gives

formally the expression of the (linear) response of the nuclear spin N to the perturbation
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of nuclear spin M. It differs from the usual linear response theory in the fact that the
field degrees of freedom are included. As is well known, response theory is equivalent
to perturbation theory when the perturbations become static, i.e. time-independent, and
represents a straightforward generalization of the definition of molecular properties
for time-dependent perturbations [160].

5.4.4. Effective nuclear spin–spin interaction

The response theory outlined in the previous section can be used to obtain an effective
nuclear spin–spin interaction. Phenomenologically, in NMR spectroscopy, the energy
shift bilinear in the nuclear spins IN and IM defines the nuclear spin coupling tensor
Dpq(N,M )þ Jpq(N,M ) according to

E ð2Þ ¼ h JpqðN,M Þ þDpqðN,M Þ
� �

INpIMq, ð205Þ

where Dpq and Jpq are named the direct and indirect (i.e. via the electrons) coupling tensor,
respectively; the nuclear magnetic moment is related to the nuclear spin by lK¼ �K�hIK,
(K¼M,N ), �K being the magnetogyric ratio of nucleus K.

Equation (204) allows us to define a quantum field Tpq analogous to the coupling
tensor by factoring out the nuclear spins

�hHN
I i ¼ hTpqINpIMq, ð206Þ

with

Tpq ¼ �N�M
h

ð2�Þ2
hhBpðRN, tÞ;BqðRM, t 0Þii: ð207Þ

Using the expressions for B¼
P

aB
(a) derived in Section 5.4.2, the various contributions

to the tensor Tpq ¼
P

ab T
ða,bÞ
pq can be calculated as follows

T ða,bÞpq ¼ �N�M
h

ð2�Þ2
hhBðaÞp ðRN, tÞ;B

ðbÞ
q ðRM, t 0Þii: ð208Þ

5.4.5. e0 order term

The leading term in Tpq is the lowest (e0) order contribution T ð0,0Þpq . This corresponds to
the case of interaction of the magnetic moments with the non-perturbed radiation field.
As can be seen from Equation (204) and since no interactions with the electrons occur, this
corresponds to transitions from the unperturbed ground states j�0�0i to the intermediate
states j�k��0i. So, Equation (208) gives

T ð0,0Þpq ¼ �N�M
h

ð2�Þ2
�0

4�

�pqR
2
MN � 3XMN,pXMN,q

R5
MN

� �
, ð209Þ

where XMN,i is the i-th component of the vector RMN¼RM�RN, and RMN¼ jRMNj.

5.4.6. e2 order terms

The possible contributions quadratic in the electron charge are T ð1,1Þpq and T ð0,2Þpq þ T ð2,0Þpq ,
which we grouped according to the order of the fields involved. Note that the operator B(1)
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acts on the fermion states while B(2) changes both the fermion states and the photon

number. As noted previously in a non-relativistic context, this is an operator having no

classical analogue [161]. The operator B(1) only acts on the fermion Fock space. Hence,

the ground and intermediate states are, respectively, j�0�0 and j�0�
r
ai (see Equation 204).

Inserting the operator B(1) (Equation 191), and summing over the polarization directions

by using of the identity X
�

k� eð�Þ � � eð�Þ
� �

¼ k� a, ð210Þ

and transforming the k-summation into an integral, we get

Tð1,1Þpq ¼
�0

4�
ec

� �2X
ar

"mnp"rsqhajrm
e�ikarrN

RN

� �
�njri

�
1


a � 
r
hrjrr

eikarrM

RM

� �
�sjai: ð211Þ

The term TpqðB
ð0Þ,Bð2ÞÞ 
 T ð0,2Þpq þ T ð2,0Þpq depends on the second-order field, which is an

operator acting in the combined fermion–photon space. However, it enters into

Tpq(B
(0),B(2)) with B(0) which does not change the fermion state. So, the intermediate

states are of the form j�k��0i, i.e. single occupation of photon modes and electrons in the

DF ground state. Then, after some manipulations, Equation (208) gives [17,18]

TpqðB
ð0Þ,Bð2ÞÞ

¼
X
ja

�0ec

4�

� �2 1


a � 
j

lmp
rsq

hajið�ð1Þr r
M
s Þð�

ð2Þ
l r

N
mÞ

1� e�ikjaðr2N�ctÞ

r1Mr2N
�ðr1M � r2NÞ þ

1� eikjaðr1M�ctÞ

r1Mr2N
�ðr2N � r1MÞ

� ��
jnj i

þ hajið�ð1Þl r
N
mÞð�

ð2Þ
r r

M
s Þ

1� eikjaðr1N�ctÞ

r1Nr2M
�ðr2M � r1NÞ þ

1� e�ikjaðr2M�ctÞ

r1Nr2M
�ðr1N � r2MÞ

� �
j jai


ð212Þ

for times such that ct is greater than any of the distances r1N, r2N, r1M or r2M.

5.4.7. Comparison to classical-field theory

It is instructive to consider the relation between the quantum-field (Q) coupling tensor Tpq

defined in the previous section with the usual classical-field (C) one, namely, the tensor Kpq

of NMR spectroscopy. Note that Q-expressions consist finally of one-electron operators

without reference to the photon frequencies. However, their influence can be traced out

through the dependence on the energy differences in the exponents. As is usual, the
C-expressions are recovered as these differences approach zero. Let us consider

successively the Tð1,1Þpq and Tpq(B
(0), B(2)) tensors.

Exponential functions of Equation (211) show that the leading contributions to the

tensor Tð1,1Þpq are those having kar� 1, since otherwise the exponentials turn out to be

rapidly oscillating and the matrix elements give vanishing contributions. Since a and r

International Reviews in Physical Chemistry 57

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
3
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



represent occupied and virtual states, respectively, and their energy differences must be

j
a� 
rj� 2mc/h�, the virtual states r are essentially positive-energy states. Then

T ð1,1Þpq ’
�0

4�
ec

� �2Xocc
a

XðþÞ
r

"mnp"rsqhajrm
1

RN

� �
�njri

1


a � 
r
hrjrr

1

RM

� �
�sjai þ c:c: ð213Þ

On the other hand, Equation (212) shows that the most important contributions to
Tpq(B

(0),B(2)) come from the low-lying negative-energy states for which kja’ 2mc/�h, so that

the exponential functions oscillate rapidly and the numerators can be replaced by unity.

Then,

TpqðB
ð0Þ,Bð2ÞÞ

’
Xocc
a

Xð�Þ
j

�0ec

4�

� �2 1


a � 
j

lmp
rsq

hajið�ð1Þr r
M
s Þð�

ð2Þ
l r

N
mÞ

1

r1Mr2N

� ��
jaji þ hajið�ð1Þl r

N
mÞð�

ð2Þ
r r

M
s Þ

1

r1Nr2M

� �
j jai



¼
X
ja

�0ec

4�

� �2 1


a � 
j

lmp
rsq

hajð�rr
M
s Þ

1

rM
jjihjjð�lr

N
mÞ

1

rN
jai þ hajð�lr

N
mÞ

1

rN
jjihjjð�rr

M
s Þ

1

rN
jai

� 
: ð214Þ

It should be noted that the matrix elements of Equations (213) and (214) can be reduced
to their non-relativistic form by using the approximate relation between the large (L) and

small (S) two-component spinors of the four-component Dirac wavefunctions

j Si ’
r � p

2mc
j Li, ð215Þ

where j i ¼

���� L

 S

�
for positive-energy and j i ¼

���� S

 L

�
for negative-energy wavefunctions,

with the standard representation of the Dirac matrices a in terms of Pauli matrices r

a ¼
0 r

r 0

� �
ð216Þ

to give

hajrm
1

RN

� �
�njri ’

1

2mc
h�Ljfrm

1

RN

� �
�n, �ipigjr

Li ð217Þ

when r is a positive-energy state and {A,B}¼ABþBA represents the anticommutator

between A and B; and

hajrm
1

RN

� �
�nj j i ’ h�

Ljrm
1

RN

� �
�nj j

Li ð218Þ

when j is a negative-energy state.
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It should also be pointed out that in Ramsey’s non-relativistic theory, paramagnetic
terms (FC, PSO and SD) arise from second-order perturbation theory, while the single
diamagnetic spin–orbit term DSO is obtained from first-order perturbation theory.
However, in the relativistic domain, as discussed by Sternheim [157] and Aucar et al. [29],
the operators are linear in the nuclear spins; hence, there is no contribution from
first-order perturbation theory to the nuclear spin–spin coupling. In this case, the coupling
is an effect completely accounted for by second-order perturbation theory. The
non-relativistic DSO term is an approximation to that part of the (second-order)
expression including only intermediate negative-energy states. In line with this, Equation
(214) is the relativistic C-expression with negative energy (of order �2mc2) states j, which
has been shown to give the non-relativistic DSO term [29,157].

6. Concluding remarks

In this review we have tried to show what polarization propagators are, and what one
can learn by studying NMR spectroscopic parameters with them; within NR, relativistic
and QED theories. The beautiful quantum feature of this tool, which consider all likely
pathways through which a perturbation could reach a given place of a system being
initiated in a different place, is expressed in the analysis and calculation of molecular
properties by including what are called coupling pathways. They consist of all excitations
that are allowed to contribute to a given property calculation.

Even though polarization propagators have exactly the same formal definition (a nice
feature of them), they give different insights depending on the regime to which they are
applied. On the other hand, calculations that start within the relativistic regime will end up
in the correct NR values when one makes c go to infinity. This is a special characteristic
of polarization propagators that is in line with what the founder of propagators, Richard
Feynman, wanted when he was looking for a way to introduce the formalism of quantum
theory from more classical tools like the principle of least action. We want to highlight this
feature because it is quite transparent in this case and involves new considerations
that should be fulfilled. As an example, J-couplings are produced by mechanisms that are
electron-spin restricted in the NR regime though spin is no longer a good quantum
number within the relativistic regime. So how can we obtain such contributions starting
from the relativistic expressions? One should include time-reversal symmetry which is a
kind of generalization of spin symmetry. By doing this one starts from pseudo-singlet
expressions and ends up naturally in two kinds of electron-spin-dependent terms, of singlet
and triplet type.

One of the main goals of relativistic polarization propagators is the unification of all
electronic mechanisms that produce the NMR spectroscopic parameters in only one.
Indeed such a mechanism is exactly the same for paramagnetic and diamagnetic terms.
So within the relativistic regime it is nonsense to split them up into two. There is only
one mechanism that is not of diamagnetic or paramagnetic type. One can get both
of them, but after making an approximation. Then diamagnetism and paramagnetism
are understood as something completely different from what we know from the NR
world. This is also more nicely seen within the QED theory which shows that
paramagnetic-like contributions arise from excitations to ‘virtual’ positive-energy states
and diamagnetic-like contributions arise from excitations to ‘virtual’ negative-energy
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electronic states. This distinction is complete at the PZOA level of approach but has a mix
of contributions of both excitations whenever electron correlation is considered: that
‘virtual’ excitations are completely equivalent to ‘virtual’ electron–positron creation and
annihilation. This is something completely new but makes a lot of sense. It is like an
extension of the concept of ‘virtual’ bondings or antibondings that are necessary to
well-define a bond. When going to a relativistic theory one should consider sooner or later
the fact that positrons could exist, and such existence may have an influence on the
molecular system even though there is not enough energy to make them real particles.
One additional explanation that arises from our QED theory is related to the fact that
diamagnetic-like contributions can be completely described by an interval of excitation
energies: 2mc2� j"i� "ãj5 4mc2. This should be the case because otherwise one would get
real electron–positron pairs which is not possible because there is not enough energy
available.

The NR rule that paramagnetic-like contributions to the magnetic shielding of rare
gases are zero is not fulfilled within the relativistic regime. We have shown here, for the
first time, that there is a more general rule that includes the paramagnetic-like contribution
to the magnetic shielding of the elements belonging to the same row of the periodic table.

Another interesting feature that arises within the QED theory is the fact that the gauge
invariance of the shielding is equivalent to covariance. From a non-covariant QED one
gets diamagnetic-like and paramagnetic-like terms, but we all know that only the covariant
formulation of QED is right; and this implies that both diamagnetic and paramagnetic-like
terms should be summed up to obtain a covariant formulation.

Within the NR domain we have shown that using polarization propagators one can get
reliable results and also a deep understanding of several conspicuous properties of NMR
spectroscopic parameters. The sign of J could be understood as arising from the relative
sign of phases between occupied and virtual electron states at the site of nuclei for the
FC mechanism. This is independent of the distance between the coupled nuclei and
generalizes (which means that it includes) the previous model of Dirac and Peeney.
Another interesting finding only obtained with polarization propagators is the explanation
of the Karplus rule through a new kind of entanglement which will be developed in more
detail in future publications. We have given some other studies that include cooperative
effects, long-range couplings (of the order of a few nanometres distant) and the proton
transfer mechanism in Schiff bases.

Polarization propagators are nice theoretical tools that give a deep insight on the
physics behind the electronic structure of molecular processes. The beauty and simplicity
of its equations within the relativistic regime, its natural NR limit and its relationship with
QED theory, and its predictive power and versatility to explain different mechanisms
that intervene in the origin of NMR spectroscopic parameters, makes them one of the
most powerful theoretical tools for studying these molecular properties.
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